Learn More
The goal of this paper is to present a non-iterative and more importantly an extremely fast algorithm to reconstruct images from compressively sensed (CS) random measurements. To this end, we propose a novel convolutional neural network (CNN) architecture which takes in CS measurements of an image as input and outputs an intermediate reconstruction. We call(More)
Ground Truth 25% measurements 4% measurements 1% measurements Figure 1: Given the block-wise compressively sensed (CS) measurements, our non-iterative algorithm is capable of high quality reconstructions. Notice how fine structures like tiger stripes or letter 'A' are recovered from only 4% measurements. Despite the expected degradation at measurement rate(More)
Compressive imagers, e.g. the single-pixel camera (SPC), acquire measurements in the form of random projections of the scene instead of pixel intensities. Compressive Sensing (CS) theory allows accurate reconstruction of the image even from a small number of such projections. However, in practice, most reconstruction algorithms perform poorly at low(More)
Spatial-multiplexing cameras have emerged as a promising alternative to classical imaging devices, often enabling acquisition of `more for less'. One popular architecture for spatial multiplexing is the single-pixel camera (SPC), which acquires coded measurements of the scene with pseudo-random spatial masks. Significant theoretical developments over the(More)
Energy expenditure (EE) estimation from accelerometer-based wearable sensors is important to generate accurate assessment of physical activity (PA) in individuals. Approaches hitherto have mainly focused on using accelerometer data and features extracted from these data to learn a regression model to predict EE directly. In this paper, we propose a novel(More)
  • 1