Sugumar Murugesan

Learn More
—Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically,(More)
— Channel state information (CSI) is important for achieving large rates in MIMO channels. However, in time-varying MIMO channels, there is a tradeoff between the time/energy spent acquiring channel state information (CSI) and the time/energy remaining for data transmission. This tradeoff is accentuated in the MIMO multiple access channel (MAC), since the(More)
—We address the problem of opportunistic multiuser scheduling in downlink networks with Markov-modeled outage channels. We consider the scenario in which the scheduler does not have full knowledge of the channel state information, but instead estimates the channel state information by exploiting the memory inherent in the Markov channels along with(More)
—This paper focuses on the downlink of a cellular system and studies opportunistic multiuser scheduling under imperfect channel state information, by exploiting the memory inherent in the channel. The channel between the base station and each user is modeled by a two-state Markov chain and the scheduled user sends back an ARQ feedback that arrives at the(More)
—In this study, we focus on the stochastic reliability of smart grids with two classes of energy users-traditional energy users and opportunistic energy users (e.g., smart appliances or electric vehicles), and investigate the procurement of energy supply from both conventional generation (base-load and fast-start) and wind generation via multi-timescale(More)
—In time-varying wireless networks, the states of the communication channels are subject to random variations, and hence need to be estimated for efficient rate adaptation and scheduling. The estimation mechanism possesses inaccuracies that need to be tackled in a probabilistic framework. In this work, we study scheduling with rate adaptation in single-hop(More)
We consider a cognitive radio network with multiple primary users (PUs) and one secondary user (SU), where a spectrum server is utilized for spectrum sensing and scheduling the SU to transmit over one of the PU channels opportunistically. One practical yet challenging scenario is when both the PU occupancy and the channel fading vary over time and exhibit(More)
We consider the downlink of a cellular system and address the problem of multiuser scheduling with partial channel information. In our setting, the channel of each user is modeled by a three-state Markov chain. The scheduler indirectly estimates the channel via accumulated Automatic Repeat Request (ARQ) feedback from the scheduled users and uses this(More)