Sue M. Powell

Learn More
Hey1 is a member of the basic helix-loop-helix-Orange family of transcriptional repressors that mediate Notch signaling. Here we show that transcription from androgen-dependent target genes is inhibited by Hey1 and that expression of a constitutively active form of Notch is capable of repressing transactivation by the endogenous androgen receptor (AR). Our(More)
Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required(More)
A PCR-based subtractive hybridisation technique was used to identify genes involved in stromal-epithelial interactions in prostate cancer. Eight genes were identified as being differentially expressed in benign prostatic fibroblast cells after stimulation with tumourigenic LNCaP conditioned media. One of these genes, protein tyrosine phosphatase CAAX2(More)
Progression of prostate cancer is highly dependent upon the androgen receptor pathway, such that knowledge of androgen-regulated proteins is vital to understand and combat this disease. Using a proteomic screen, we found the RNA-binding protein FUS/TLS (Fused in Ewing's Sarcoma/Translocated in Liposarcoma) to be downregulated in response to androgen. FUS(More)
The androgen receptor (AR) is a member of the nuclear receptor superfamily. These ligand-activated transcription factors usually contain two activation functions, a ligand-independent activation function 1(AF1) in the divergent N-terminal domain and a ligand-dependent AF2 in the more conserved C-terminal ligand-binding domain. To promote transcription from(More)
AIM To investigate the correlation between androgen receptor expression and fibroblast growth factor 8 (FGF8) mRNA levels. METHODS 39 human prostate cancers and 14 benign prostatic hypertrophy specimens were examined immunohistochemically for androgen receptor expression and by in situ hybridisation and reverse transcription polymerase chain reaction for(More)
Anti-androgens used in prostate cancer therapy inhibit AR (androgen receptor) activity via largely unknown mechanisms. Although initially successful in most cases, they eventually fail and the disease progresses. We need to elucidate how anti-androgens work to understand why they fail, and prolong their effects or design further therapies. Using a cellular(More)
Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease - hence the quest for new effective therapies for 'castrate-resistant' prostate cancer (CRPC). Studies into what pathways can drive(More)
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor(More)