Learn More
Much of the information available about factors that affect mRNA decay in Escherichia coli, and by inference in other bacteria, has been gleaned from study of less than 25 of the approximately 4,300 predicted E. coli messages. To investigate these factors more broadly, we examined the half-lives and steady-state abundance of known and predicted E. coli(More)
The enzyme RNase E (ref. 1) cuts RNA at specific sites within single-stranded segments. The role of adjacent regions of secondary structure in such cleavages is controversial. Here we report that 10-13-nucleotide oligomers lacking any stem-loop but containing the RNase E-cleaved sequence of RNA I, the antisense repressor of replication of ColE1-type(More)
Previous work has shown that RNase E-mediated cleavage of RNAI, an antisense repressor of the replication of ColE1-type plasmids, relieves repression in vivo by endonucleolytically converting RNAI to a rapidly decaying product. We report that mutations in the Escherichia coli pcnB gene result in a 10-fold prolongation of the half-life of RNAI decay(More)
The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC To isolate and identify other components(More)
Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic(More)
Whereas ribosomal proteins (r-proteins) are known primarily as components of the translational machinery, certain of these r-proteins have been found to also have extraribosomal functions. Here we report the novel ability of an r-protein, L4, to regulate RNA degradation in Escherichia coli. We show by affinity purification, immunoprecipitation analysis, and(More)
Growth arrest-specific (Gas) genes are expressed during serum starvation or contact inhibition of cells grown in culture. Here we report the isolation and characterization of Gas8, a novel gene identified on the basis of its growth arrest-specific expression in murine fibroblasts. We show that production of Gas8 mRNA and protein occurs in adult mice(More)
Earlier work has shown that RNase E cleaves RNAI, the antisense repressor of replication of ColE1-type plasmids, producing pRNAI-5, whose further decay is mediated by the poly(A)-dependent activity of polynucleotide phosphorylase and other 3' to 5' exonucleases. Using a poly(A) polymerase-deficient strain to impede exonucleolytic decay, we show that RNAI is(More)
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and(More)
RNA synthesis and decay counteract each other and therefore inversely regulate gene expression in pro- and eukaryotic cells by controlling the steady-state level of individual transcripts. Genetic and biochemical data together with recent in depth annotation of bacterial genomes indicate that many components of the bacterial RNA decay machinery are(More)