Sue C Kinnamon

Learn More
Taste receptor cells detect chemicals in the oral cavity and transmit this information to taste nerves, but the neurotransmitter(s) have not been identified. We report that adenosine 5'-triphosphate (ATP) is the key neurotransmitter in this system. Genetic elimination of ionotropic purinergic receptors (P2X2 and P2X3) eliminates taste responses in the taste(More)
Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste(More)
Amiloride-sensitive Na+ channels play an important role in transducing Na+ salt taste. Previous studies revealed that in rodent taste cells, the channel shares electrophysiological and pharmacological properties with the epithelial Na+ channel, ENaC. Using subunit-specific antibodies directed against alpha, beta, and gamma subunits of rat ENaC (rENaC), we(More)
Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous(More)
Rat taste buds contain three morphologically distinct cell types that are candidates for taste transduction. The physiologic roles of these cells are, however, not clear. Inositol 1,4,5-triphosphate (IP(3)) has been implicated as an important second messenger in bitter, sweet, and umami taste transductions. Previously, we identified the type III IP(3)(More)
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic(More)
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein(More)
Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells.(More)
Octopamine and an agonist, chlordimeform, increase the responsiveness of adult and pharate adult Manduca sexta to gentle mechanical stimulation of the wing. Higher doses of chlordimeform elicit almost continuous production of the flight motor pattern in both adults and pharate adults, and the effect persists for more than 24 h. The dose of chlordimeform(More)
Sour taste is mediated by acids with the degree of sourness a function of proton concentration. Recently, several members of the acid-sensing ion channel subfamily (ASICs) were cloned from taste cells and proposed to mediate sour taste. However, it is not known whether sour responses in taste cells resemble the responses mediated by ASICs. Using the whole(More)