Learn More
Taste receptor cells detect chemicals in the oral cavity and transmit this information to taste nerves, but the neurotransmitter(s) have not been identified. We report that adenosine 5'-triphosphate (ATP) is the key neurotransmitter in this system. Genetic elimination of ionotropic purinergic receptors (P2X2 and P2X3) eliminates taste responses in the taste(More)
Amiloride-sensitive Na+ channels play an important role in transducing Na+ salt taste. Previous studies revealed that in rodent taste cells, the channel shares electrophysiological and pharmacological properties with the epithelial Na+ channel, ENaC. Using subunit-specific antibodies directed against alpha, beta, and gamma subunits of rat ENaC (rENaC), we(More)
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste(More)
Behavioral and physiological studies have demonstrated a reduced sensitivity to several taste stimuli early in development. It has been suggested that this reduced sensitivity results from a late maturation of underlying transduction mechanisms. Little is known, however, about maturation of membrane properties of taste cells early in development. We have(More)
Both amiloride-sensitive and -insensitive mechanisms contribute to NaCl taste transduction. The amiloride-sensitive mechanism relies on the epithelial Na(+) channel ENaC, which is widely expressed on the apical membrane of fungiform taste cells. The amiloride-insensitive mechanism, which predominates in circumvallate and foliate taste buds, was recently(More)
Previous studies in rat and mouse have shown that brief exposure to the bitter stimulus denatonium induces an increase in [Ca2+]i due to Ca2+ release from intracellular Ca2+ stores, rather than Ca2+ influx. We report here that prolonged exposure to denatonium induces sustained increases in [Ca2+]i that are dependent on Ca2+ influx. Similar results were(More)
Rat taste buds contain three morphologically distinct cell types that are candidates for taste transduction. The physiologic roles of these cells are, however, not clear. Inositol 1,4,5-triphosphate (IP(3)) has been implicated as an important second messenger in bitter, sweet, and umami taste transductions. Previously, we identified the type III IP(3)(More)
BACKGROUND Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with(More)
Despite extensive immunological characterization of the cells within taste buds, little is known about the functional significance of the different cell types. In this study, we use taste cells isolated from mouse vallate and foliate papillae to characterize voltage-gated currents in the three principal elongate types of taste cells: type I, II, and III.(More)
Amiloride has been suggested to inhibit responses to a variety of taste stimuli, including salty, sweet, and sour (acid). To test for the involvement of amiloride-sensitive Na+ channels in the transduction of acid stimuli, fungiform taste receptor cells were examined using patch-clamp techniques. Approximately one-half of all cells had amiloride-sensitive(More)