Learn More
The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It(More)
This paper presents a method for joint stereo matching and object segmentation. In our approach a 3D scene is represented as a collection of visually distinct and spatially coherent objects. Each object is characterized by three different aspects: a color model, a 3D plane that approximates the object's disparity distribution, and a novel 3D connec-tivity(More)
We present an interactive system for generating photorealistic, textured, piecewise-planar 3D models of architectural structures and urban scenes from unordered sets of photographs. To reconstruct 3D geometry in our system, the user draws outlines overlaid on 2D photographs. The 3D structure is then automatically computed by combining the 2D interaction(More)
We present a new structure from motion (Sfm) technique based on point and vanishing point (VP) matches in images. First, all global camera rotations are computed from VP matches as well as relative rotation estimates obtained from pairwise image matches. A new multi-staged linear technique is then used to estimate all camera translations and 3D points(More)
This paper describes novel implementations of the KLT feature tracking and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by exploiting parallelism provided by modern programmable(More)
Most existing structure from motion (SFM) approaches for unordered images cannot handle multiple instances of the same structure in the scene. When image pairs containing different instances are matched based on visual similarity , the pairwise geometric relations as well as the correspondences inferred from such pairs are erroneous, which can lead to(More)
We propose a new technique to jointly recover cosegmentation and dense per-pixel correspondence in two images. Our method parameterizes the correspondence field using piecewise similarity transformations and recovers a mapping between the estimated common "foreground" regions in the two images allowing them to be precisely aligned. Our formulation is based(More)
In this paper we present an automatic method for calibrating a network of cameras from only silhouettes. This is particularly useful for shape-from-silhouette or visual-hull systems, as no additional data is needed for calibration. The key novel contribution of this work is an algorithm to robustly compute the epipolar geometry from dynamic silhouettes. We(More)