Sudipta N. Sinha

Learn More
The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It(More)
We present an interactive system for generating photorealistic, textured, piecewise-planar 3D models of architectural structures and urban scenes from unordered sets of photographs. To reconstruct 3D geometry in our system, the user draws outlines overlaid on 2D photographs. The 3D structure is then automatically computed by combining the 2D interaction(More)
Most existing structure from motion (SFM) approaches for unordered images cannot handle multiple instances of the same structure in the scene. When image pairs containing different instances are matched based on visual similarity, the pairwise geometric relations as well as the correspondences inferred from such pairs are erroneous, which can lead to(More)
This paper describes novel implementations of the KLT feature tracking and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by exploiting parallelism provided by modern programmable(More)
The paper introduces a data collection system and a processing pipeline for automatic geo-registered 3D reconstruction of urban scenes from video. The system collects multiple video streams, as well as GPS and INS measurements in order to place the reconstructed models in geo- registered coordinates. Besides high quality in terms of both geometry and(More)
This paper describes novel implementations of the KLT feature tracking and SIFT feature extraction algorithms that run on the graphics processing unit (GPU) and is suitable for video analysis in real-time vision systems. While significant acceleration over standard CPU implementations is obtained by exploiting parallelism provided by modern programmable(More)
This paper presents a method for joint stereo matching and object segmentation. In our approach a 3D scene is represented as a collection of visually distinct and spatially coherent objects. Each object is characterized by three different aspects: a color model, a 3D plane that approximates the object’s disparity distribution, and a novel 3D connectivity(More)
This paper describes a novel approach for reconstructing a closed continuous surface of an object from multiple calibrated color images and silhouettes. Any accurate reconstruction must satisfy (1) photo-consistency and (2) silhouette consistency constraints. Most existing techniques treat these cues identically in optimization frameworks where silhouette(More)
We present a stereo algorithm designed for speed and efficiency that uses local slanted plane sweeps to propose disparity hypotheses for a semi-global matching algorithm. Our local plane hypotheses are derived from initial sparse feature correspondences followed by an iterative clustering step. Local plane sweeps are then performed around each slanted plane(More)