Learn More
The hyper-radiosensitivity at low doses recently observed in vitro in a number of cell lines is thought to have important implications for improving tumor radiotherapy. However, cell-cell contact and the cellular environment influence cellular radiosensitivity at higher doses, and they may alter hyper-radiosensitivity in vivo. To confirm this supposition,(More)
Release of cytochrome-c from mitochondria is a key regulatory event in the intrinsic pathway of apoptosis, and its mechanism has been the subject of extensive debate with investigators proposing different and contrasting models. While some models suggest that cytochrome-c release can occur in absence of permeability transition and is mediated by the(More)
The glycolytic inhibitor 2-deoxy-D-glucose (2-DG) has been used as a therapeutic agent and as an adjuvant in cancer therapy with either weekly fractions of the treatment or daily administration. While the weekly fraction has often been found to be nontoxic and effective, other treatment regimes are tolerated to a relatively lesser extent. It was therefore,(More)
BACKGROUND Lepidopteran insect cells withstand multifold higher radiation doses and suffer far less DNA damage despite carrying numerous structural/functional homologies with mammalian cells. Since DNA-histone interactions significantly influence radiation-induced DNA damage, we investigated the role of histones in insect cell radioresistance. METHODS(More)
PURPOSE Lepidopteran insect cells are known to exhibit very high radioresistance. Although very effective DNA excision-repair has been proposed as a contributing factor, a detailed understanding of insect cell radiation responses has not yet been obtained. Therefore, the study was carried out to understand the in vitro radiation responses of Sf9(More)
PURPOSE To investigate homology and stress response of p53 (a 53 kDa tumor suppressor protein) orthologue in Sf9 Lepidopteran insect cell line that exhibits very high radioresistance. MATERIALS AND METHODS Western immunoblotting, immunoprecipitation, degenerate RT-PCR (reverse transcription-polymerase chain reaction), electrophoretic gel mobility shift(More)
Lepidopteran insects show remarkable resistance to radiation and chemical stress than insects of other orders. Despite this, the antioxidant machinery of insects of this order is poorly understood. Recently we demonstrated the significance of cytoplasmic NOS and a stronger mitochondrial antioxidant enzyme system in the stress-resistance of Lepidopteran(More)
Previous studies on various insect cell lines have displayed very high radioresistance in Lepidoptera (butterflies and moths) as compared to mammals as well as other orders of Insecta including Diptera. Since NOS is known to modulate cellular radiation sensitivity, we carried out in silico analysis of Lepidopteran NOS and compared its structural and(More)
Certain insects (e.g., moths and butterflies; order Lepidoptera) and nematodes are considered as excellent experimental models to study the cellular stress signaling mechanisms since these organisms are far more stress-resistant as compared to mammalian system. Multiple factors have been implicated in this unusual response, including the oxidative stress(More)