Sudheendra Vijayanarasimhan

Learn More
Convolutional neural networks (CNNs) have been extensively applied for image recognition problems giving state-of-the-art results on recognition, detection, segmentation and retrieval. In this work we propose and evaluate several deep neural network architectures to combine image information across a video over longer time periods than previously attempted.(More)
Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel approaches at scale. It is possible to train models over millions of examples within a few days. Although large-scale datasets exist for(More)
Active learning strategies can be useful when manual labeling effort is scarce, as they select the most informative examples to be annotated first. However, for visual category learning, the active selection problem is particularly complex: a single image will typically contain multiple object labels, and an annotator could provide multiple types of(More)
Active learning and crowdsourcing are promising ways to efficiently build up training sets for object recognition, but thus far techniques are tested in artificially controlled settings. Typically the vision researcher has already determined the dataset’s scope, the labels “actively” obtained are in fact already known, and/or the crowd-sourced collection(More)
Conventional supervised methods for image categorization rely on manually annotated (labeled) examples to learn good object models, which means their generality and scalability depends heavily on the amount of human effort available to help train them. We propose an unsupervised approach to construct discriminative models for categories specified simply by(More)
We consider the problem of retrieving the database points nearest to a given hyperplane query without exhaustively scanning the entire database. For this problem, we propose two hashing-based solutions. Our first approach maps the data to 2-bit binary keys that are locality sensitive for the angle between the hyperplane normal and a database point. Our(More)
Many object detection systems are constrained by the time required to convolve a target image with a bank of filters that code for different aspects of an object's appearance, such as the presence of component parts. We exploit locality-sensitive hashing to replace the dot-product kernel operator in the convolution with a fixed number of hash-table probes(More)
Manually segmenting and labeling objects in video sequences is quite tedious, yet such annotations are valuable for learning-based approaches to object and activity recognition. While automatic label propagation can help, existing methods simply propagate annotations from arbitrarily selected frames (e.g., the first one) and so may fail to best leverage the(More)
We present an active learning approach to choose image annotation requests among both object category labels and the objects' attribute labels. The goal is to solicit those labels that will best use human effort when training a multi-class object recognition model. In contrast to previous work in active visual category learning, our approach directly(More)