Sudeshna Das

Learn More
BACKGROUND There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the(More)
To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared(More)
A workflow-centric research object bundles a workflow, the provenance of the results obtained by its enactment, other digital objects that are relevant for the experiment (papers, datasets, etc.), and annotations that semantically describe all these objects. In this paper, we propose a model to specify workflow-centric research objects, and show how the(More)
We present the Annotation Ontology (AO), an open ontology in OWL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables “stand-off” (separate) metadata anchored to specific positions in document text by any one of several methods. In AO, the document may be annotated but is not required to be(More)
Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create(More)
Sharing and describing experimental results unambiguously with sufficient detail to enable replication of results is a fundamental tenet of scientific research. In today's cluttered world of "-omics" sciences, data standards and standardized use of terminologies and ontologies for biomedical informatics play an important role in reporting high-throughput(More)
Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high(More)
BACKGROUND With the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a(More)
Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even(More)
Comparisons of stem cell experiments at both molecular and semantic levels remain challenging due to inconsistencies in results, data formats, and descriptions among biomedical research discoveries. The Harvard Stem Cell Institute (HSCI) has created the Stem Cell Commons (stemcellcommons.org), an open, community-based approach to data sharing. Experimental(More)