Sucharita Dey

Learn More
The number and importance of intrinsically disordered proteins (IUP), known to be involved in various human disorders, are growing rapidly. To test for the generalized implications of intrinsic disorders in proteins involved in Neurodegenerative diseases, disorder prediction tools have been applied to three datasets comprising of proteins involved in(More)
Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5) by absorption(More)
We analyzed subunit interfaces in 315 homodimers with an X-ray structure in the Protein Data Bank, validated by checking the literature for data that indicate that the proteins are dimeric in solution and that, in the case of the "weak" dimers, the homodimer is in equilibrium with the monomer. The interfaces of the 42 weak dimers, which are smaller by a(More)
We have conjugated chloroquine, an anti-malarial, antiviral and anti-tumor drug, with thiol-functionalized gold nanoparticles and studied their binding interaction with bovine serum albumin (BSA) protein. Gold nanoparticles have been synthesized using sodium borohydride as reducing agent and 11-mercaptoundecanoic acid as thiol functionalizing ligand in(More)
We present a set of four parameters that in combination can predict DNA-binding residues on protein structures to a high degree of accuracy. These are the number of evolutionary conserved residues (N(cons)) and their spatial clustering (ρ(e)), hydrogen bond donor capability (D(p)) and residue propensity (R(p)). We first used these parameters to characterize(More)
Vibrio cholerae accessory cholera enterotoxin (Ace) is the third toxin, along with cholera toxin (CT) and zonula occludens toxin (Zot), that causes the endemic disease cholera. Structural characterization of Ace has been restricted because of the limited production of this toxic protein by V. cholerae. We have cloned, overexpressed, and purified Ace from V.(More)
Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we(More)
We perform an analysis of the quaternary structure and dimer/dimer interface in the crystal structures of 165 human hemoglobin tetramers; 112 are in the T, 17 the R, 14 the Y (or R2) state; 11 are high-affinity T state mutants, and 11 may either be intermediates between the states, or off the allosteric transition pathway. The tertiary structure is fixed(More)
Elucidating protein function from its structure is central to the understanding of cellular mechanisms. This involves deciphering the dependence of local structural motifs on sequence. These structural motifs may be stabilized by direct or water-mediated hydrogen bonding among the constituent residues. π-Turns, defined by interactions between (i) and (i +(More)
Stability and induction of the lysogenic state of bacteriophage λ are balanced by a complex regulatory network. A key feature of this network is the mutually exclusive cooperative binding of a repressor dimer (CI) to one of two pairs of binding sites, O(R)1-O(R)2 or O(R)2-O(R)3. The structural features that underpin the mutually exclusive binding mode are(More)
  • 1