Learn More
Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of(More)
Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective(More)
BACKGROUND The transcription factor AP1 mediates long-term plasticity in vertebrate and invertebrate central nervous systems. Recent studies of activity-induced synaptic change indicate that AP1 can function upstream of CREB to regulate both CREB-dependent enhancement of synaptic strength as well as CREB-independent increase in bouton number at the(More)
Activity-regulated gene expression mediates many aspects of neural plasticity, including long-term memory. In the prevailing view, patterned synaptic activity causes kinase-mediated activation of the transcription factor cyclic AMP response-element-binding protein, CREB. Together with appropriate cofactors, CREB then transcriptionally induces a group of(More)
Since its description more than fifteen years ago, the GAL4-UAS system of heterologous transgenic expression has found universal and widespread use in Drosophila research , making it a uniquely powerful analytical tool. Several hundreds of enhancer-trap GAL4 "driver" lines have since been used to express proteins of interest in specific spatio-temporal(More)
Translational repression by Drosophila Pumilio (Pum) protein controls posterior patterning during embryonic development. Here, we show that Pum is an important mediator of synaptic growth and plasticity at the neuromuscular junction (NMJ). Pum is localized to the postsynaptic side of the NMJ in third instar larvae and is also expressed in larval neurons.(More)
Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying(More)
Retrograde signals influence neuronal survival, differentiation, synaptogenesis, and plasticity. Several recent papers describe novel roles for the well-studied TGF-beta pathway in retrograde synaptic signaling. While each dissects spatial and molecular aspects of TGF-beta signaling in a specific synaptic context, together these studies demonstrate that a(More)
NSF is an ATPase required for the fusion of secretory vesicles with plasma membrane. Conditional comatose (Drosophila homolog of N-ethylmaleimide sensitive fusion factor (NSF)) mutations in Drosophila block synaptic transmission at restrictive temperature. Current models hold that NSF-mediated dissociation of SNARE (SNAp REceptor) complexes on mature(More)
Spinal muscular atrophy (SMA), a devastating neurodegenerative disorder characterized by motor neuron loss and muscle atrophy, has been linked to mutations in the Survival Motor Neuron (SMN) gene. Based on an SMA model we developed in Drosophila, which displays features that are analogous to the human pathology and vertebrate SMA models, we functionally(More)