Learn More
In dealing with large data sets, the reduced support vector machine (RSVM) was proposed for the practical objective to overcome some computational difficulties as well as to reduce the model complexity. In this paper, we study the RSVM from the viewpoint of sampling design, its robustness, and the spectral analysis of the reduced kernel. We consider the(More)
The problem of choosing a good parameter setting for a better generalization performance in a learning task is the so-called model selection. A nested uniform design (UD) methodology is proposed for efficient, robust and automatic model selection for support vector machines (SVMs). The proposed method is applied to select the candidate set of parameter(More)
BACKGROUND Selection of influential genes with microarray data often faces the difficulties of a large number of genes and a relatively small group of subjects. In addition to the curse of dimensionality, many gene selection methods weight the contribution from each individual subject equally. This equal-contribution assumption cannot account for the(More)
The multiclass classification problem is considered and resolved through coding and regression. There are various coding schemes for transforming class labels into response scores. An equivalence notion of coding schemes is developed, and the regression approach is adopted for extracting a low-dimensional discriminant feature subspace. This feature subspace(More)
BACKGROUND With the completion of the international HapMap project, many studies have been conducted to investigate the association between complex diseases and haplotype variants. Such haplotype-based association studies, however, often face two difficulties; one is the large number of haplotype configurations in the chromosome region under study, and the(More)
Finding an efficient and computationally feasible approach to deal with the curse of high-dimensionality is a daunting challenge faced by modern biological science. The problem becomes even more severe when the interactions are the research focus. To improve the performance of statistical analyses, we propose a sparse and low-rank (SLR) screening based on(More)