Learn More
Protoplasmic astrocytes are critically important to energy metabolism in the CNS. Our current understanding of the metabolic interactions between neurons and glia is based on studies using cultured cells, from which mainly inferential conclusions have been drawn as to the relative roles of neurons and glia in brain metabolism. In this study, we used(More)
Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains(More)
Neonatal engraftment by oligodendrocyte progenitor cells (OPCs) permits the myelination of the congenitally dysmyelinated brain. To establish a potential autologous source of these cells, we developed a strategy by which to differentiate human induced pluripotent stem cells (hiPSCs) into OPCs. From three hiPSC lines, as well as from human embryonic stem(More)
—Constrained energy minimization (CEM) has shown effective in hyperspectral target detection. It linearly constrains a desired target signature while minimizing interfering effects caused by other unknown signatures. This paper explores this idea for band selection and develops a new approach to band selection, referred to as constrained band selection(More)
Amyloid beta peptide (Abeta) generated from amyloid precursor protein (APP) is central to Alzheimer's disease (AD). Signaling pathways affecting APP amyloidogenesis play critical roles in AD pathogenesis and can be exploited for therapeutic intervention. Here, we show that sumoylation, covalent modification of cellular proteins by small ubiquitin-like(More)
Congenitally hypomyelinated shiverer mice fail to generate compact myelin and die by 18-21 weeks of age. Using multifocal anterior and posterior fossa delivery of sorted fetal human glial progenitor cells into neonatal shiverer x rag2(-/-) mice, we achieved whole neuraxis myelination of the engrafted hosts, which in a significant fraction of cases rescued(More)
In this paper, we propose a coupled level set (LS) framework for segmentation of bladder wall using T(1)-weighted magnetic resonance (MR) images with clinical applications to virtual cystoscopy (i.e., MR cystography). The framework uses two collaborative LS functions and a regional adaptive clustering algorithm to delineate the bladder wall for the wall(More)
Recent compelling evidence has lead to renewed interest in the role of antibodies and immune complexes in the pathogenesis of several autoimmune disorders, such as rheumatoid arthritis. These immune complexes, consisting of autoantibodies to self-antigens, can mediate inflammatory responses largely through binding and activating the immunoglobulin Fc(More)
p38 Mitogen-activated protein kinase (MAPK) is one of the most ancient signaling molecules and is involved in multiple cellular processes, including cell proliferation, cell growth, and cell death. In the heart, enhanced activation of p38 MAPK is associated with ischemia/reperfusion injury and the onset of heart failure. In the present study, we(More)
The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to(More)