Stylianos Ravanidis

Learn More
Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial(More)
UNLABELLED Neural precursor cell (NPC) transplantation has been proposed as a therapy for multiple sclerosis (MS) and other degenerative disorders of the central nervous system (CNS). NPCs are suggested to exert immune modulation when they are transplanted in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Herein, we explore whether(More)
Postnatally isolated neural precursor cells (piNPCs) from mouse cerebral tissue have been studied in cell-based therapeutic approaches for Experimental Autoimmune Encephalomyelitis (EAE). Transplantation experiments in EAE rodents revealed that piNPCs manage to integrate into the host tissue and ameliorate clinical symptoms. When cultured in vitro, mouse(More)
OBJECTIVE The aim of the study was to investigate the expression of different immunological mediators in blood and CSF in patients with acute ON and to estimate whether they were implicated in pro- or anti-inflammatory or even regulatory reactions in comparison with a healthy control group (HC). METHODS Sixty-four patients between 18 and 59 years of age(More)
Stem cell-based therapies are currently widely explored as a tool to treat neuroimmune diseases. Multipotent adult progenitor cells (MAPC) have been suggested to have strong immunomodulatory and neuroprotective properties in several experimental models. In this study, we investigate whether MAPC are of therapeutic interest for neuroinflammatory disorders(More)
The development of the cerebral cortex is a complex process that requires the generation, migration, and differentiation of neurons. Interfering with any of these steps can impair the establishment of connectivity and, hence, function of the adult brain. Neurotransmitter receptors have emerged as critical players to regulate these biological steps during(More)
Macrophages and microglia are key effector cells in immune-mediated neuroinflammatory disorders. Driving myeloid cells towards an anti-inflammatory, tissue repair-promoting phenotype is considered a promising strategy to halt neuroinflammation and promote central nervous system (CNS) repair. In this study, we defined the impact of multipotent adult(More)
  • 1