Stuart Wigby

Learn More
Conflicts between females and males over reproductive decisions are common . In Drosophila, as in many other organisms, there is often a conflict over how often to mate. The mating frequency that maximizes male reproductive success is higher than that which maximizes female reproductive success . In addition, frequent mating reduces female lifespan and(More)
Mating and immunity are intimately linked to fitness. In both vertebrates and invertebrates, recent investigations into mate choice for immunity, tradeoffs between reproduction and immunity, and the relationships between post-mating processes and immune function have revealed that mating and immunity are also intimately linked to each other. Here, we focus(More)
Postcopulatory sexual selection can select for sperm allocation strategies in males [1, 2], but males should also strategically allocate nonsperm components of the ejaculate [3, 4], such as seminal fluid proteins (Sfps). Sfps can influence the extent of postcopulatory sexual selection [5-7], but little is known of the causes or consequences of quantitative(More)
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies(More)
Ejaculates are fundamental to fitness in sexually reproducing animals: males gain all their direct fitness via the ejaculate and females require ejaculates to reproduce. Both sperm and non-sperm components of the ejaculate (including parasperm, seminal proteins, water, and macromolecules) play vital roles in postcopulatory sexual selection and conflict,(More)
Male seminal fluid proteins induce a profound remodelling of behavioural, physiological and gene signalling pathways in females of many taxa, and typically cause elevated egg production and decreased sexual receptivity. In Drosophila melanogaster, these effects can be mediated by an ejaculate 'sex peptide' (SP), which, in addition, contributes significantly(More)
Female promiscuity can generate postcopulatory competition among males, but it also provides the opportunity for exploitation of rival male ejaculates. For example, in many insect species, male seminal fluid proteins (Sfps) transferred in a female's first mating stimulate increased fecundity and decreased receptivity to remating. Subsequent mates of females(More)
Mating rate is a major determinant of female lifespan and fitness, and is predicted to optimize at an intermediate level, beyond which superfluous matings are costly. In female Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like(More)
The existence and evolutionary significance of sexual selection through sperm competition was first realized by Geoff Parker in a prescient and influential review published in 1970. Parker recognized that competition between males for fertilizations will continue after mating, if the sperm of two or more males overlap near the site of fertilization in(More)
Mating and immunity are two major components of fitness and links between them have been demonstrated in a number of recent investigations. In Drosophila melanogaster, a seminal fluid protein, sex-peptide (SP), up-regulates a number of antimicrobial peptide (AMP) genes in females after mating but the resulting effect on pathogen resistance is unclear. In(More)