Stuart W. Hoffman

Learn More
STUDY OBJECTIVE Laboratory evidence indicates that progesterone has potent neuroprotective effects. We conducted a pilot clinical trial to assess the safety and potential benefit of administering progesterone to patients with acute traumatic brain injury. METHODS This phase II, randomized, double-blind, placebo-controlled trial was conducted at an urban(More)
Studies demonstrating the versatility of neural progenitor cells (NPCs) have recently rekindled interest in neurotransplantation methods aimed at treating traumatic brain injury (TBI). However, few studies have evaluated the safety and functional efficacy of transplanted NPCs beyond a few months. The purpose of this study was to assess the long-term(More)
Multipotential stem cells are an attractive choice for cell therapy after traumatic brain injury (TBI), as replacement of multiple cell types may be required for functional recovery. In the present study, neural stem cells (NSCs) derived from the germinal zone of E14.5 GFP-expressing mouse brains were cultured as neurospheres in FGF2-enhanced medium. When(More)
The gonadal hormone, progesterone, has been shown to have neuroprotective effects in injured nervous system, including the severity of postinjury cerebral edema. Progesterone's attenuation of edema is accompanied by a sparing of neurons from secondary neuronal death and with improvements in cognitive outcome. In addition, we recently reported that(More)
We compared the effects of three different doses of allopregnanolone (4, 8 or 16 mg/kg), a metabolite of progesterone, to progesterone (16 mg/kg) in adult rats with controlled cortical impact to the pre-frontal cortex. Injections were given 1 h, 6 h and every day for 5 consecutive days after the injury. One day after injury, both progesterone-treated (16(More)
This study investigates whether progesterone administration regulates AQP4 and GFAP expression in rats with bilateral contusion injuries of the medial frontal cortex. Male rats were given 0 or 16 mg/kg injections of progesterone at 1, 6, 24, and 48 h post-injury. Brains were extracted at 24 h or 72 h post-injury and assayed for cerebral edema and AQP4 and(More)
Evidence suggests that progesterone enhances functional recovery in rats after medial frontal cortical contusions; however, a high dose of progesterone exacerbates tissue loss in a stroke model when administered chronically (7-10 days) prior to injury [Stroke 31 (2000) 1173)]. This study attempts to determine progesterone's dose-response effects on(More)
Following a traumatic brain injury (TBI), the excessive release of interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) is a major cause of cerebral edema, which, in turn, can cause permanent neuronal loss and cognitive deficits in laboratory rats. This study examined the changes in expression of the proinflammatory cytokines IL-1beta(More)
STUDY OBJECTIVE We compare the effects of postinjury administration of allopregnanolone, a metabolite of progesterone, to progesterone in an animal model of transient middle cerebral artery occlusion. METHODS Focal cerebral ischemia was induced in age-matched, adult, male, Sprague-Dawley rats by using an intraluminal filament and suture method to occlude(More)
PURPOSE In the current study we investigated whether allopregnanolone, a metabolite of progesterone, could replicate progesterone's beneficial effects in promoting spatial learning ability after bilateral medial prefrontal cortex contusions in rats. Allopregnanolone has been shown to enhance GABA neurotransmission, whereas its isomer epiallopregnanolone(More)