Stuart J. Russell

Learn More
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many “plausible” ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for the user to manually tweak the metric until sufficiently good clusters are(More)
This paper investigates conditions under which modi cations to the reward function of a Markov decision process preserve the op timal policy It is shown that besides the positive linear transformation familiar from utility theory one can add a reward for tran sitions between states that is expressible as the di erence in value of an arbitrary poten tial(More)
This paper introduces and illustrates BLOG, a formal language for defining probability models over worlds with unknown objects and identity uncertainty. BLOG unifies and extends several existing approaches. Subject to certain acyclicity constraints, every BLOG model specifies a unique probability distribution over first-order model structures that can(More)
Dynamic probabilistic networks are a compact representation of complex stochastic processes. In this paper we examine how to learn the structure of a DPN from data. We extend structure scoring rules for standard probabilistic networks to the dynamic case, and show how to search for structure when some of the variables are hidden. Finally, we examine two(More)
"Background subtraction" is an old technique for finding moving objects in a video sequence-for example, cars driving on a freeway. The idea is that subtracting the current image from a time­ averaged background image will leave only non­ stationary objects. It is, however, a crude ap­ proximation to the task of classifying each pixel of the current image;(More)
Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are used widely for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This(More)