Stuart J. Greaves

Learn More
The dynamics of bimolecular chemical reactions can be examined in liquid solutions using infrared absorption spectroscopy with picosecond time resolution. On such short time scales, the transient absorption spectra reveal vibrational mode and quantum-state-specific energy disposal, followed by vibrational relaxation as the energy is dissipated to the(More)
Vibrational energy flow into reactants, and out of products, plays a key role in chemical reactivity, so understanding the microscopic detail of the pathways and rates associated with this phenomenon is of considerable interest. Here, we use molecular dynamics simulations to model the vibrational relaxation that occurs during the reaction CN + c-C(6)H(12) →(More)
The experimental technique of velocity map imaging (VMI) enables measurements to be made of the dynamics of chemical reactions that are providing unprecedented insights about reactive scattering. This perspective article illustrates how VMI, in combination with crossed-molecular beam, dual-beam or photo-initiated (Photoloc) methods, can reveal correlated(More)
Transient, broadband infra-red absorption spectroscopy with picosecond time resolution has been used to study the dynamics of reactions of CN radicals with tetrahydrofuran (THF) and d(8)-THF in liquid solutions ranging from neat THF to 0.5 M THF in chlorinated solvents (CDCl(3) and CD(2)Cl(2)). HCN and DCN products were monitored via their v(1) (C≡N(More)
The dynamics of reactions of CN radicals with cyclohexane, d(12)-cyclohexane, and tetramethylsilane have been studied in solutions of chloroform, dichloromethane, and the deuterated variants of these solvents using ultraviolet photolysis of ICN to initiate a reaction. The H(D)-atom abstraction reactions produce HCN (DCN) that is probed in absorption with(More)
The concentration of hexachlorophene was determined in serial blood samples taken from seven premature infants washed with pHisoHex. Results indicated that after a single wash with 5ml of pHisoHex, blood concentrations reached a maximum of 0.75-1.20mug/ml two to four days after application. The results obtained in this study confirm that the dermal(More)
Solvent collisions can often mask initial disposition of energy to the products of solution-phase chemical reactions. Here, we show with transient infrared absorption spectra obtained with picosecond time resolution that the nascent HCN products of reaction of CN radicals with cyclohexane in chlorinated organic solvents exhibit preferential excitation of(More)
Transient electronic absorption measurements with 1 ps time resolution follow XeF2 photoproducts in acetonitrile and chlorinated solvents. Ultraviolet light near 266 nm promptly breaks one Xe-F bond, and probe light covering 320-700 nm monitors the products. Some of the cleaved F atoms remain in close proximity to an XeF fragment and perturb the electronic(More)
The surfactant-free synthesis of vinyl polymer-silica nanocomposite particles has been achieved in aqueous alcoholic media at ambient temperature in the absence of auxiliary comonomers. Styrene, methyl methacrylate, methyl acrylate, n-butyl acrylate, and 2-hydroxypropyl methacrylate were homopolymerized in turn in the presence of three commercially(More)
Solvent-solute interactions influence the mechanisms of chemical reactions in solution, but the response of the solvent is often slower than the reactive event. Here, we report that exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethane involve efficient energy flow to vibrational motion of the deuterium fluoride (DF) product(More)