Learn More
A recombinant strain of attenuated Salmonella enterica serovar Typhi surface-expressing Yersinia pestis F1 antigen was generated by transforming strain BRD1116 (aroA aroC htrA) with plasmid pAH34L encoding the Y. pestis caf operon. BRD1116/pAH34L was stable in vitro and in vivo. An immunisation regimen of two intranasal doses of 1 x 10(8) cfu of(More)
Protective antigen (PA), the major protective component of the existing vaccine, is a potent immunogen. Protective antigen in alhydrogel induced a high serum IgG titre (> log10 4) in both the C57B16 and Balb/c mouse and the predominant subclass of antibody induced was IgG1, indicating that the response to PA was predominantly Th2 directed. When plasmid DNA(More)
In some species DNA vaccines elicit potent humoral and cellular immune responses. However, their performance in humans and non-human primates is less impressive. There are suggestions in the literature that an increase in the intercellular distribution of protein expressed from a DNA vaccine may enhance immunogenicity. We incorporated the Herpes Simplex(More)
Plasmids expressing the V antigen of Yersinia pestis or the E2 glycoprotein of Venezuelan Equine Encephalitis (VEE) virus were used to vaccinate mice by intra-dermal or intra-muscular injection, or by particle-mediated bombardment using the Helios gene gun. After two immunizations, groups of mice which had received 4 microg doses of plasmid DNA using the(More)
There is currently no licensed vaccine for brucellosis in humans. Available animal vaccines may cause disease and are considered unsuitable for use in humans. However, the causative pathogen, Brucella, is among the most common causes of laboratory-acquired infections and is a Center for Disease Control category B select agent. Thus, human vaccines for(More)
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of(More)
The advantages associated with DNA vaccines include the speed with which they may be constructed and produced at large-scale, the ability to produce a broad spectrum of immune responses, and the ability for delivery using non-invasive means. In addition, DNA vaccines may be manipulated to express multiple antigens and may be tailored for the induction of(More)
Attenuated strains of Salmonella enterica serovar Typhimurium are used as carriers of heterologous antigens as candidate oral vaccines and, more recently, as carriers of DNA vaccines. In this study, recombinant Salmonella strains that were altered in their ability to colonise murine tissues in vivo when compared to parent strains were not, however, equally(More)
There is a need to identify vaccines that can protect against Brucella, a potential bioterrorism agent. We have developed mouse models of infection with aerosolized Brucella melitensis and Brucella suis and demonstrated their utility for the evaluation of vaccines using the model live B. melitensis vaccine strain Rev.1.
The protective antigen (PA) of Bacillus anthracis and the V antigen of Yersinia pestis are potent immunogens and candidate vaccine sub-units. When plasmid DNA encoding either PA or V antigen was used to immunise the Balb/c mouse, a low serum IgG titre was detected (log (10)1.0 or less) which was slightly increased by boosting with plasmid DNA. However, when(More)