Stuart D. Perkins

Learn More
There is currently no licensed vaccine for brucellosis in humans. Available animal vaccines may cause disease and are considered unsuitable for use in humans. However, the causative pathogen, Brucella, is among the most common causes of laboratory-acquired infections and is a Center for Disease Control category B select agent. Thus, human vaccines for(More)
A recombinant strain of attenuated Salmonella enterica serovar Typhi surface-expressing Yersinia pestis F1 antigen was generated by transforming strain BRD1116 (aroA aroC htrA) with plasmid pAH34L encoding the Y. pestis caf operon. BRD1116/pAH34L was stable in vitro and in vivo. An immunisation regimen of two intranasal doses of 1 x 10(8) cfu of(More)
A DNA vaccine was constructed which expressed the binding domain of Clostridium botulinum neurotoxin serotype F fused to a signal peptide. Three intra-muscular doses fully protected Balb/c mice against 10(4) MLD of serotype F toxin. Priming of the immune response by DNA vaccination followed by a single booster with type F binding domain protein resulted in(More)
There are no widely available vaccines or antiviral drugs capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), although an adenovirus vector expressing VEEV structural proteins protects mice from challenge with VEEV and is potentially a vaccine suitable for human use. This work examines whether alpha interferon(More)
In some species DNA vaccines elicit potent humoral and cellular immune responses. However, their performance in humans and non-human primates is less impressive. There are suggestions in the literature that an increase in the intercellular distribution of protein expressed from a DNA vaccine may enhance immunogenicity. We incorporated the Herpes Simplex(More)
Background: Previously, antigens expressed from DNA vaccines have been fused to the VP22 protein from Herpes Simplex Virus type I in order to improve efficacy. However, the immune enhancing mechanism of VP22 is poorly understood and initial suggestions that VP22 can mediate intercellular spread have been questioned. Despite this, fusion of VP22 to antigens(More)
The advantages associated with DNA vaccines include the speed with which they may be constructed and produced at large-scale, the ability to produce a broad spectrum of immune responses, and the ability for delivery using non-invasive means. In addition, DNA vaccines may be manipulated to express multiple antigens and may be tailored for the induction of(More)
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of(More)
Plasmids expressing the V antigen of Yersinia pestis or the E2 glycoprotein of Venezuelan Equine Encephalitis (VEE) virus were used to vaccinate mice by intra-dermal or intra-muscular injection, or by particle-mediated bombardment using the Helios gene gun. After two immunizations, groups of mice which had received 4 microg doses of plasmid DNA using the(More)
Protective antigen (PA), the major protective component of the existing vaccine, is a potent immunogen. Protective antigen in alhydrogel induced a high serum IgG titre (> log10 4) in both the C57B16 and Balb/c mouse and the predominant subclass of antibody induced was IgG1, indicating that the response to PA was predominantly Th2 directed. When plasmid DNA(More)