Learn More
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a(More)
The TrkB family of transmembrane proteins serve as receptors for brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-4/5, and possibly NT-3, three members of the neurotrophin family of neurotrophic factors. In order to understand the potential roles played by these receptors, we have examined the distribution of the TrkB receptor proteins in the(More)
The neurotrophins brain-derived neurotrophic factor (BDNF) and NT-4/5 exert their trophic effects on the nervous system via signaling through trkB receptors. These receptors occur as splice variants of the trkB gene that encodes a full-length receptor containing the signal transducing tyrosine kinase domain as well as truncated forms lacking this domain.(More)
To assess the potential effectiveness by which injected neurotrophins can diffuse throughout the brain, we used autoradiographic and immunohistochemical techniques to examine the brain distributions of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) after a single injection into the lateral cerebral ventricle(More)
Tau is a developmentally regulated microtubule-associated protein that influences microtubule behavior by directly associating with tubulin. The carboxyl terminus of tau contains multiple 18-amino acid repeats that bind microtubules and are separated by 13-14-amino acid inter-repeat (IR) regions previously thought to function as "linkers." Here, we have(More)
The trkB family of transmembrane proteins serves as receptors for BDNF and NT-4/5. The family is composed of a tyrosine kinase-containing isoform as well as several alternatively spliced "truncated receptors" with identical extracellular ligand-binding domains but very small intracellular domains. The two best-characterized truncated trkB receptors,(More)
Neurotrophins play important roles in the survival, differentiation, and maintenance of CNS neurons. To begin to investigate specific roles for these factors in the mammalian visual system, we have examined the cellular localization of the neurotrophin receptor trkB within the developing cerebral cortex and thalamus of the ferret using extracellular(More)
Tau is a neuronal microtubule-associated protein that plays an important role in stabilizing axonal microtubules and maintaining neuronal processes. To investigate the mechanisms by which tau performs these functions, we have determined the actions of full-length adult tau and tau peptides corresponding to two different microtubule-binding domains of tau(More)
To investigate the role of neurotrophins in the initial formation of striatal patch versus matrix, the spatial and temporal expression of trkB receptors was examined using immunohistochemistry. Polyclonal antibodies, against the C-terminus or the tyrosine kinase domain, revealed trkB-immunoreactive cells and fibers localized to patches beginning on(More)
The TrkB receptor tyrosine kinase (RTK) is a high affinity receptor for the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5). Following exposure to BDNF or NT-4/5, TrkB is autophosphorylated on five cytoplasmic tyrosines: Y484, Y670, Y674, Y675, and Y785. Based on crystallographic analyses for others RTKs, TrkB tyrosines(More)