Learn More
" The world is either the effect of cause or chance. If the latter, it is a world for all that, that is to say, it is a regular and beautiful structure. " Marcus Aurelius Proto-organisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by(More)
This article investigates the possibility that the emergence of reflexively autocatalytic sets of peptides and polypeptides may be an essentially inevitable collective property of any sufficiently complex set of polypeptides. The central idea is based on the connectivity properties of random directed graphs. In the set of amino acid monomer and polymer(More)
Current advances in molecular biology enable us to access the rapidly increasing body of genetic information. It is still challenging to model gene systems at the molecular level. Here, we propose two types of reaction kinetic models for constructing genetic networks. Time delays involved in transcription and translation are explicitly considered to explore(More)
We introduce a broadened framework to study aspects of coevolution based on the NK class of statistical models of rugged fitness landscapes. In these models the fitness contribution of each of N genes in a genotype depends epistatically on K other genes. Increasing epistatic interactions increases the rugged multipeaked character of the fitness landscape.(More)
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of(More)
A stochastic genetic toggle switch model that consists of two identical, mutually repressive genes is built using the Gillespie algorithm with time delays as an example of a simple stochastic gene regulatory network. The stochastic kinetics of this model is investigated, and it is found that the delays for the protein productions can highly weaken the(More)
We study how the notions of importance of variables in Boolean functions as well as the sensitivities of the functions to changes in these variables impact the dynamical behavior of Boolean networks. The activity of a variable captures its influence on the output of the function and is a measure of that variable's importance. The average sensitivity of a(More)
Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate') of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we(More)
SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work(More)