Stine Kroghsbo

Learn More
An animal model for safety assessment of genetically modified foods was tested as part of the SAFOTEST project. In a 90-day feeding study on Wistar rats, the transgenic KMD1 rice expressing Cry1Ab protein was compared to its non-transgenic parental wild type, Xiushui 11. The KMD1 rice contained 15mg Bt toxin/kg and based on the average feed consumption the(More)
Genetically modified plants expressing insecticidal traits offer a new strategy for crop protection, but at the same time present a challenge in terms of food safety assessment. The present 90-day feeding study was designed to assess the safety of a rice variety expressing the snowdrop Galanthus nivalis lectin (GNA lectin), and forms part of a EU-funded(More)
The 90-day animal study is the core study for the safety assessment of genetically modified foods in the SAFOTEST project. The model compound tested in the 90-day study was a rice variety expressing the kidney bean Phaseolus vulgaris lectin agglutinin E-form (PHA-E lectin). Female Wistar rats were given a nutritionally balanced purified diet with 60%(More)
As part of the SAFOTEST project the immunmodulating effect of Cry1Ab protein from Bacillus thuringiensis (Bt) and PHA-E lectin from kidney bean (Phaseolus vulgaris erythroagglutinin) was examined in 28- and 90-day feeding studies in Wistar rats. PHA-E lectin was chosen as positive control. Rats were fed control rice, transgenic rice expressing Cry1Ab(More)
BACKGROUND Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle immunomodulating factors or factors effective during response initiation,(More)
BACKGROUND Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. OBJECTIVES To examine the sensitizing capacity of gluten proteins per se when altered(More)
BACKGROUND IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. (More)
BACKGROUND Food allergies are a public health issue of growing concern, with peanuts in particular being associated with severe reactions. The peanut allergen, Ara h 1, belongs to the cupin plant food allergen family, which, unlike other structural families, appears to be broken down rapidly following gastrointestinal digestion. OBJECTIVE Using Ara h 1 as(More)
BACKGROUND It is not known why some foods sensitizing via the gastrointestinal tract are prevalent allergenic foods and others are not. Eating habits, processing, and the food matrix have been suggested to influence the allergenicity of a given food. Factors related to protein structure, such as stability to digestion, have also been suggested. 7S globulins(More)
BACKGROUND Characterisation of the specific antibody response, including the epitope binding pattern, is an essential task for understanding the molecular mechanisms of food allergy. Examination of antibody formation in a controlled environment requires animal models. The purpose of this study was to examine the amount and types of antibodies raised against(More)