Learn More
The mobility (homing) of the yeast mitochondrial DNA group II intron al2 occurs via target DNA-primed reverse transcription at a double-strand break in the recipient DNA. Here, we show that the site-specific DNA endonuclease that makes the double-strand break is a ribonucleoprotein complex containing the al2-encoded reverse transcriptase protein and excised(More)
Group II introns are self-splicing RNAs and retroelements found in bacteria and lower eukaryotic organelles. During the past several years, they have been uncovered in surprising numbers in bacteria due to the genome sequencing projects; however, most of the newly sequenced introns are not correctly identified. We have initiated an ongoing web site database(More)
Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of(More)
Mobile group II introns encode reverse transcriptases and insert site specifically into intronless alleles (homing). Here, in vitro experiments show that homing of the yeast mtDNA group II intron aI2 occurs by reverse transcription at a double-strand break in the recipient DNA. A site-specific endonuclease cleaves the antisense strand of recipient DNA at(More)
Bordetella bacteriophages generate diversity in a gene that specifies host tropism. This microevolutionary adaptation is produced by a genetic element that combines the basic retroelement life cycle of transcription, reverse transcription and integration with site-directed, adenine-specific mutagenesis. Central to this process is a reverse(More)
Group II introns are novel genetic elements that have properties of both catalytic RNAs and retroelements. Initially identified in organellar genomes of plants and lower eukaryotes, group II introns are now being discovered in increasing numbers in bacterial genomes. Few of the newly sequenced bacterial introns are correctly identified or annotated by those(More)
The Database for Bacterial Group II Introns (http://webapps2.ucalgary.ca/~groupii/index.html#) provides a catalogue of full-length, non-redundant group II introns present in bacterial DNA sequences in GenBank. The website is divided into three sections. The first section provides general information on group II intron properties, structures and(More)
Retroelements are usually considered to be eukaryotic elements because of the large number and variety in eukaryotic genomes. By comparison, reverse transcriptases (RTs) are rare in bacteria, with only three characterized classes: retrons, group II introns and diversity-generating retroelements (DGRs). Here, we present the results of a bioinformatic survey(More)
Reverse transcriptases (RTs) are RNA-dependent DNA polymerases that usually function in the replication of selfish DNAs such as retrotransposons and retroviruses. Here, we have biochemically characterized a RT-related protein, AbiK, which is required for abortive phage infection in the Gram-positive bacterium Lactococcus lactis. In vitro, AbiK does not(More)