Steven X Hou

Learn More
The Drosophila melanogaster JUN N-terminal kinase (DJNK) and DPP (decapentaplegic) signal transduction pathways coordinately regulate epithelial cell sheet movement during the process of dorsal closure in the embryo. By a genetic screen of mutations affecting dorsal closure in Drosophila, we have now identified a multidomain protein, connector of kinase to(More)
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing(More)
Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells(More)
Cancer stem cells (CSCs) may be responsible for tumour dormancy, relapse and the eventual death of most cancer patients. In addition, these cells are usually resistant to cytotoxic conditions. However, very little is known about the biology behind this resistance to therapeutics. Here we investigated stem-cell death in the digestive system of adult(More)
Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem(More)
In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance(More)
  • 1