Steven Woodhouse

Learn More
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network(More)
Recent experimental advances in biology allow researchers to obtain gene expression profiles at single-cell resolution over hundreds, or even thousands of cells at once. These single-cell measurements provide snapshots of the states of the cells that make up a tissue, instead of the population-level averages provided by conventional high-throughput(More)
Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of(More)
Hematopoiesis represents one of the paradigmatic systems for studying stem cell biology, but our understanding of how the hematopoietic system develops during embryogenesis is still incomplete. While many lessons have been learned from studying the mouse embryo, embryonic stem cells have come to the fore as an alternative and more tractable model to(More)
Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse(More)
New single-cell technologies readily permit gene expression profiling of thousands of cells at single-cell resolution. In this review, we will discuss methods for visualisation and interpretation of single-cell gene expression data, and the computational analysis needed to go from raw data to predictive executable models of gene regulatory network function.(More)
Here we report the use of diffusion maps and network synthesis from state transition graphs to better understand developmental pathways from single cell gene expression profiling. We map the progression of mesoderm towards blood in the mouse by single-cell expression analysis of 3,934 Users may view, print, copy, and download text and data-mine the content(More)
Erratum After the publication of this work [1] it was noticed that four authors were omitted from the author list and author contributions. These authors have now been added to the list, and the updated author contributions are included below. Authors' contributions VP, LHV, KNN, JP and TL carried out ex vivo/in vitro experiments. RM and KRJ carried out in(More)