Learn More
Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein(More)
As bioengineering applications expand, the need to design and implement circuits that exhibit dynamic properties increases. In particular, schemes that control precise patterns of gene expression as a function of time are essential for balancing multiple metabolic objectives in natural and synthetic systems. Given that modularity has been an important(More)
General aspects regarding the presence of nonsymbiotic haemoglobin in plants are presented with the emphasis on those related to its function. As it becomes apparent that the nonsymbiotic haemoglobins are widespread across the plant kingdom and that they represent a more primitive and evolutionary older form of the plant globin genes, the question of their(More)
Methods for improving microbial strains for metabolite production remain the subject of constant research. Traditionally, metabolic tuning has been mostly limited to knockouts or overexpression of pathway genes and regulators. In this paper, we establish a new method to control metabolism by inducing optimally tuned time-oscillations in the levels of(More)
While RNA structures have been extensively characterized in vitro, very few techniques exist to probe RNA structures inside cells. Here, we have exploited mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes that assay RNA structures in vivo. Our probing system involves the co-expression of two constructs: (i) a target RNA(More)
Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work,(More)
  • 1