Learn More
Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of(More)
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project(More)
Shimoda LA, Laurie SS. Hif and pulmonary vascular responses to hypoxia. the lung, acute reductions in oxygen lead to hypoxic pulmonary vasoconstriction, whereas prolonged exposures to hypoxia result in sustained vasoconstriction, pulmonary vascular remodeling, and the development of pulmonary hypertension. Data from both human subjects and animal models(More)
Intrapulmonary arteriovenous (IPAV) shunting has been shown to occur at rest in some subjects breathing a hypoxic gas mixture [fraction of inspired oxygen (FI(O(2))) = 0.12] for brief periods of time. In the present study we set out to determine if IPAV shunting could be induced at rest in all subjects exposed to hypoxia for 30 min. Twelve subjects (6(More)
Our purpose was to report the prevalence of healthy, young, asymptomatic humans who demonstrate left heart contrast at rest, breathing room air. We evaluated 176 subjects (18-41 years old) using transthoracic saline contrast echocardiography. Left heart contrast appearing ≤3 cardiac cycles, consistent with a patent foramen ovale (PFO), was detected in 67(More)
Concern has been raised that altering the fraction of inspired O₂ (Fi(O₂)) could accelerate or decelerate microbubble dissolution time within the pulmonary vasculature and thereby invalidate the ability of saline contrast echocardiography to detect intrapulmonary arteriovenous shunt in subjects breathing either a low or a high Fi(O₂). The present study(More)
A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated(More)
  • 1