Learn More
Neuronal process remodeling occurs widely in the construction of both invertebrate and vertebrate nervous systems. During Drosophila metamorphosis, gamma neurons of the mushroom bodies (MBs), the center for olfactory learning in insects, undergo pruning of larval-specific dendrites and axons followed by outgrowth of adult-specific processes. To elucidate(More)
At adult emergence, the ventral CNS of Drosophila shows a group of approximately 300 neurons, which are unique in that they express 10-fold higher levels of the A isoform of the ecdysone receptor (EcR-A) than do other central neurons. This expression pattern is established early in metamorphosis and persists throughout the remainder of the pupal stage.(More)
The steroid hormone 20-hydroxyecdysone induces metamorphosis in insects. The receptor for the hormone is the ecdysone receptor, a heterodimer of two nuclear receptors, EcR and USP. In Drosophila the EcR gene encodes 3 isoforms (EcR-A, EcR-B1 and EcR-B2) that vary in their N-terminal region but not in their DNA binding and ligand binding domains. The stage(More)
The Drosophila larva is widely used for studies of neuronal development and function, yet little is known about the neuronal basis of locomotion in this model organism. Drosophila larvae crawl over a plain substrate by performing repetitive waves of forward peristalsis alternated by brief episodes of head swinging and turning. To identify sets of central(More)
Programmed death in the developing nervous system of insects serves to remove obsolete neurons, generate segmental specializations and sexual dimorphism, as well as adjust neuronal number. This diversity is also reflected in the mechanisms which control the death of these neurons. In general, but not without exception, these deaths occur independent of(More)
To understand the role apoptosis plays in nervous system development and to gain insight into the mechanisms by which steroid hormones regulate neuronal apoptosis, we investigated the death of a set of peptidergic neurons in the CNS of the fruitfly Drosophila melanogaster. Typically, apoptosis in Drosophila is induced by the expression of the genes reaper,(More)
BACKGROUND The mushroom bodies (MBs) of Drosophila are required for complex behaviors and consist of three types of neurons, gamma, alpha'/beta' and alpha/beta. Previously, roles for transcription factors in MB neuronal differentiation have only been described for a subset of MB neurons. We are investigating the roles of unfulfilled (unf; HR51, CG16801) in(More)
During the development of the adult central nervous system (CNS) of the fruitfly Drosophila melanogaster, the A-isoform of the ecdysone receptor (EcR-A), a typical nuclear hormone receptor, is expressed at high levels in the Type II neurons, a set of neurons that die shortly after the emergence of the adult. To understand the role that transcriptional(More)
This is the first functional analysis in Drosophila of unfulfilled (unf; DHR51), the NR2E3 nuclear receptor superfamily ortholog of C. elegans fax-1 and human PNR. Both fax-1 and PNR mutations disrupt developmental events in a limited number of neurons, resulting in behavioral or sensory deficits. An analysis of two independent unf alleles revealed that unf(More)
The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be(More)