Steven Robert Ellis

Learn More
Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One(More)
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression(More)
Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant(More)
Diamond-Blackfan anemia (DBA) typically presents with red blood cell aplasia that usually manifests in the first year of life. The only gene currently known to be mutated in DBA encodes ribosomal protein S19 (RPS19). Previous studies have shown that the yeast RPS19 protein is required for a specific step in the maturation of 40S ribosomal subunits. Our(More)
Numerous studies have linked the overexpression of the Mr 37,000 laminin receptor precursor (37-LRP) to tumor cell growth and proliferation. The role of this protein in carcinogenesis is generally considered in the context of its putative role as a precursor for the Mr 67,000 high-affinity laminin receptor. Recent studies have shown that 37-LRP, also termed(More)
Diamond-Blackfan anemia (DBA) is a genetically and clinically heterogeneous disorder characterized by erythroid failure, congenital anomalies, and a predisposition to cancer. Faulty ribosome biogenesis, resulting in proapoptotic erythropoiesis leading to erythroid failure, is hypothesized to be the underlying defect. The genes identified to date that are(More)
Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence(More)
We have cloned the nuclear gene MRP4 coding for a mitochondrial ribosomal protein of the yeast, Saccharomyces cerevisiae. The gene was isolated by complementation of a respiratory-deficient mutant with a pleiotropic defect in mitochondrial gene expression. The nucleotide sequence of MRP4 revealed that it has sequence similarity with Escherichia coli(More)
Gene products mutated in the inherited bone marrow failure syndromes dyskeratosis congenita (DC), cartilage-hair hypoplasia (CHH), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS) are all predicted to be involved in different aspects of ribosome synthesis. At this moment, however, it is unclear whether this link indicates a causal(More)
Within the decade following the demonstration that mutations in the RPS19 gene can lead to Diamond-Blackfan anemia (DBA), this disease has become a paradigm for an emerging group of pathologies linked to defects in ribosome biogenesis. DBA patients exhibit abnormal pre-rRNA maturation patterns and the majority bear mutations in one of several ribosomal(More)