Learn More
Peroxisome proliferators (PPs) are a large class of structurally dissimilar chemicals that have diverse effects in rodents and humans. Most, if not all, of the diverse effects of PPs are mediated by three members of the nuclear receptor superfamily called peroxisome proliferator-activated receptors (PPARs). In this review, we define the molecular mechanisms(More)
There is little primate risk factor data in the literature evaluating the relationship between proposed mechanisms of PPAR agonist-induced hepatocarcinogenesis at clinically relevant therapeutic exposures. These studies were conducted to characterize the hepatic effects of fenofibrate and ciprofibrate in the cynomolgus monkey. Male cynomolgus monkeys were(More)
During the TOGA COARE Intensive Observing Period (IOP) from November 1992 through February 1993, temperature, salinity, and velocity profiles were repeatedly obtained within a 130 km ϫ 130 km region near the center of the Intensive Flux Array (IFA) in the western equatorial Pacific warm pool. Together with high quality measurements of air–sea heat flux,(More)
Peroxisome proliferator chemicals, acting via the peroxisome proliferator-activated receptor-alpha (Pparalpha), are potent hepatic mitogens and carcinogens in mice and rats. To test whether Pparalpha is required for hepatic growth in response to other stimuli, we studied liver regeneration and hepatic gene expression following partial hepatectomy (PH) of(More)
Fibrates, such as ciprofibrate, fenofibrate, and clofibrate, are peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists that have been in clinical use for many decades for treatment of dyslipidemia. When mice and rats are given PPARalpha agonists, these drugs cause hepatic peroxisome proliferation, hypertrophy, hyperplasia, and eventually(More)
Lipid homeostasis is controlled in part by the nuclear receptors peroxisome proliferator (PP)-activated receptor alpha (PPARalpha) and liver X receptor (LXR) through regulation of genes involved in fatty acid and cholesterol metabolism. Exposure to agonists of retinoid X receptor (RXR), the obligate heterodimer partner of PPARalpha, and LXR results in(More)
The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha), in addition to regulating lipid homeostasis, controls the level of tissue damage after chemical or physical stress. To determine the role of PPARalpha in oxidative stress responses, we examined damage after exposure to chemicals that increase oxidative stress in wild-type or(More)
In this study, we show that peroxisome proliferator chemical (PPC) exposure leads to alterations in the expression of genes in rat liver regulated by the sex-specific growth hormone secretory pattern and induced during inflammation. Expression of the male-specific cytochrome P450 (P450) 2C11 and alpha2 urinary globulin (alpha2u) genes and the(More)
Our long-term goal is to identify and understand the dominant vertical mixing processes influencing the evolution of the stratification over continental shelves. OBJECTIVES We want to understand the dynamics of the surface and bottom boundary layers over continental shelves and how the boundary layers contribute to mixing and the evolution of the(More)
Large-scale analysis of gene expression using cDNA microarrays promises the rapid detection of the mode of toxicity for drugs and other chemicals. cDNA microarrays were used to examine chemically induced alterations of gene expression in HepG2 cells exposed to a diverse group of toxicants at an equitoxic exposure concentration. The treatments were ouabain(More)