Learn More
We explored the nature of the tumor-initiating cell in osteosarcoma, a bone malignancy that predominately occurs in children. Previously, we observed expression of Oct-4, an embryonal transcriptional regulator, in osteosarcoma cell cultures and tissues. To examine the relationship between Oct-4 and tumorigenesis, cells from an osteosarcoma biopsy (OS521)(More)
Myb, a cellular progenitor of v-Myb oncogenes, is amplified in prostate cancer and exhibits greater amplification frequency in hormone-refractory disease. Here, we have investigated the functional significance of Myb in prostate cancer. Our studies demonstrate Myb expression in all prostate cancer cell lines (LNCaP, C4-2, PC3 and DU145) examined, whereas it(More)
Survival rates for patients with pancreatic cancer are extremely poor due to its asymptomatic progression to advanced and metastatic stage for which current therapies remain largely ineffective. Therefore, novel therapeutic agents and treatment approaches are desired to improve the clinical outcome. In this study, we determined the effects of honokiol, a(More)
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important(More)
Identification of novel molecular targets and understanding the mechanisms underlying the aggressive nature of pancreatic cancer (PC) remain prime focus areas of research. Here, we investigated the expression and pathobiological significance of p21-activated kinase 4 (PAK4), a gene that was earlier shown to be amplified in a sub-set of PC. Our data(More)
Emerging data highlight the significance of chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 (CXCL12/CXCR4) signaling axis in the chemoresistance of several malignancies, including prostate cancer (PCa); however, underlying mechanisms remain largely elusive. Here, we demonstrate that CXCL12 treatment rescues the PCa cells from docetaxel(More)
Recently, we have shown that CXCL12/CXCR4 signaling plays an important role in gemcitabine resistance of pancreatic cancer (PC) cells. Here, we explored the effect of gemcitabine on this resistance mechanism. Our data demonstrate that gemcitabine induces CXCR4 expression in two PC cell lines (MiaPaCa and Colo357) in a dose- and time-dependent manner.(More)
Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system(More)
Chemoresistance is a major obstacle in cancer treatment. Our previous studies have shown that miR-125b plays an important role in chemoresistance. Here we report a novel mechanism that up-regulation of miR-125b through Wnt signaling by Snail enriches cancer stem cells. Overexpression of Snail dramatically increases the expression of miR-125b through the(More)
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together(More)