Steven Mark Anlage

Learn More
Metamaterials are engineered materials composed of small electrical circuits producing novel interactions with electromagnetic waves. Recently, a new class of metamaterials has been created to mimic the behavior of media displaying electromagnetically induced transparency (EIT). Here we introduce a planar EIT metamaterial that creates a very large loss(More)
Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We(More)
Near-field microwave microscopy is concerned with quantitative measurement of the microwave electrodynamic response of materials on length scales far shorter than the free-space wavelength of the radiation. Here we review the basic concepts of near-field interactions between a source and sample, present an historical introduction to work in the field, and(More)
Precise microwave measurements of sample conductivity, dielectric, and magnetic properties are routinely performed with cavity perturbation measurements. These methods require the accurate determination of quality factor and resonant frequency of microwave resonators. Seven different methods to determine the resonant frequency and quality factor from(More)
We investigate the combined effect of rectification and nonlinear dynamics on the behavior of several simple nonlinear circuits. We consider the classic resistor-inductor-diode (RLD) circuit driven by a low-frequency (LF) source when an operational amplifier with negative feedback is added to the circuit. Ultra-high-frequency (UHF) signals are applied to(More)
In wave chaotic scattering, statistical fluctuations of the scattering matrix S and the impedance matrix Z depend both on universal properties and on nonuniversal details of how the scatterer is coupled to external channels. This paper considers the impedance and scattering variance ratios, Xi(z) and Xi(s), where Xi(z) =(More)
We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the nonuniversal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose probability density function (PDF)(More)
Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the(More)
Sameer Hemmady,1,2,3,4 James Hart,1 Xing Zheng,1 Thomas M. Antonsen, Jr.,1,2,3 Edward Ott,1,2,3 and Steven M. Anlage1,2,4 1Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA 2Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742-3285, USA 3Institute for Research in(More)