Learn More
We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our <i>photo(More)
This paper presents a quantitative comparison of several multi-view stereo reconstruction algorithms. Until now, the lack of suitable calibrated multi-view image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy(More)
There are billions of photographs on the Internet, comprising the largest and most diverse photo collection ever assembled. How can computer vision researchers exploit this imagery? This paper explores this question from the standpoint of 3D scene modeling and visualization. We present structure-from-motion and image-based rendering algorithms that operate(More)
In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped scene from multiple photographs taken at known but arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a special member of this class, the photo hull, that (1)(More)
We present a system that can reconstruct 3D geometry from large, unorganized collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo-sharing sites. Our system is built on a set of new, distributed computer vision algorithms for image matching and 3D reconstruction, designed to maximize parallelism at each(More)
A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space whose voxels are traversed in a fixed visibility ordering.(More)
• Map computation loops to threads on compute cores-A few threads on CPU; many threads on GPU • Align parameter size to 4 and employ SIMD arithmetic-CPU SSE operates on 4 floats; CUDA Warp operates on 32 floats Venice Final : 14K Cameras, 4.5M points, and 30M Measurements. (LM is profiled with a fixed number of 10 CG iterations). • Normalize parameters to(More)
This paper introduces an approach for enabling existing multi-view stereo methods to operate on extremely large unstructured photo collections. The main idea is to decompose the collection into a set of overlapping sets of photos that can be processed in parallel, and to merge the resulting reconstructions. This overlapping clustering problem is formulated(More)
Figure 1. In this paper, we show how to reconstruct the shape of a scene, such as the two hands shown on the left, given a single photograph of the scene under color-striped illumination shown at center. A novel dynamic programming method leads to the geometric reconstruction on the right, shown as a shaded rendering from a new viewpoint. Abstract This(More)
This paper extends the traditional binocular stereo problem into the spacetime domain, in which a pair of video streams is matched simultaneously instead of matching pairs of images frame by frame. Almost any existing stereo algorithm may be extended in this manner simply by replacing the image matching term with a spacetime term. By utilizing both spatial(More)