Steven M. Seitz

Learn More
We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our <i>photo(More)
There are billions of photographs on the Internet, comprising the largest and most diverse photo collection ever assembled. How can computer vision researchers exploit this imagery? This paper explores this question from the standpoint of 3D scene modeling and visualization. We present structure-from-motion and image-based rendering algorithms that operate(More)
This paper presents a quantitative comparison of several multi-view stereo reconstruction algorithms. Until now, the lack of suitable calibrated multi-view image datasets with known ground truth (3D shape models) has prevented such direct comparisons. In this paper, we first survey multi-view stereo algorithms and compare them qualitatively using a taxonomy(More)
In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped scene from multiple photographs taken at known but arbitrarily-distributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a special member of this class, the photo hull, that (1)(More)
We present a system that can reconstruct 3D geometry from large, unorganized collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo-sharing sites. Our system is built on a set of new, distributed computer vision algorithms for image matching and 3D reconstruction, designed to maximize parallelism at each(More)
A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space whose voxels are traversed in a fixed visibility ordering.(More)
We present a multi-view stereo algorithm that addresses the extreme changes in lighting, scale, clutter, and other effects in large online community photo collections. Our idea is to intelligently choose images to match, both at a per-view and per-pixel level. We show that such adaptive view selection enables robust performance even with dramatic appearance(More)
Mittels Image Morphing ist es möglich überzeugende Übergänge zwischen 2-dimensionalen Objekten zu erzeugen. Verändern der Objektposition oder des Beobachtungspunktes führen jedoch zu unnatürlichen Verzerrungen, welche nur schwierig zu vermeiden sind. Das Paper von Seitz und Dyer stellt eine Methode vor, welche es mittels einfachen geometrischen Projektionen(More)
We present an end-to-end system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stereo algorithm is introduced to compute depth maps accurately(More)