Steven M. Johnson

Learn More
MicroRNAs (miRNAs) are regulatory RNAs found in multicellular eukaryotes, including humans, where they are implicated in cancer. The let-7 miRNA times seam cell terminal differentiation in C. elegans. Here we show that the let-7 family negatively regulates let-60/RAS. Loss of let-60/RAS suppresses let-7, and the let-60/RAS 3'UTR contains multiple let-7(More)
Nucleosomes are the basic packaging units of chromatin, modulating accessibility of regulatory proteins to DNA and thus influencing eukaryotic gene regulation. Elaborate chromatin remodelling mechanisms have evolved that govern nucleosome organization at promoters, regulatory elements, and other functional regions in the genome. Analyses of chromatin(More)
Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a(More)
hunchback regulates the temporal identity of neuroblasts in Drosophila. Here we show that hbl-1, the C. elegans hunchback ortholog, also controls temporal patterning. Furthermore, hbl-1 is a probable target of microRNA regulation through its 3'UTR. hbl-1 loss-of-function causes the precocious expression of adult seam cell fates. This phenotype is similar to(More)
The Notch receptor and its ligands are key components in a core metazoan signaling pathway that regulates the spatial patterning, timing and outcome of many cell-fate decisions. Ligands contain a disulfide-rich Delta/Serrate/LAG-2 (DSL) domain required for Notch trans-activation or cis-inhibition. Here we report the X-ray structure of a receptor binding(More)
Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base that bridges both bacterial membranes, into which a hollow, external needle is embedded. When isolated, the latter two parts are(More)
Nucleosome positions within the chromatin landscape are known to serve as a major determinant of DNA accessibility to transcription factors and other interacting components. To delineate nucleosomal patterns in a model genetic organism, Caenorhabditis elegans, we have carried out a genome-wide analysis in which DNA fragments corresponding to nucleosome(More)
Gene regulation at functional elements (e.g., enhancers, promoters, insulators) is governed by an interplay of nucleosome remodeling, histone modifications, and transcription factor binding. To enhance our understanding of gene regulation, the ENCODE Consortium has generated a wealth of ChIP-seq data on DNA-binding proteins and histone modifications. We(More)
Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis-a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at(More)
Transthyretin (TTR) is one of the many proteins that are known to misfold and aggregate (i.e., undergo amyloidogenesis) in vivo. The process of TTR amyloidogenesis causes nervous system and/or heart pathology. While several of these maladies are associated with mutations that destabilize the native TTR quaternary and/or tertiary structure, wild-type TTR(More)