Learn More
Comprehensive metabolite identification and quantification of complex biological mixtures are central aspects of metabolomics. NMR shows excellent promise for these tasks. An automated fingerprinting strategy is presented, termed COLMAR query, which screens NMR chemical shift lists or raw 1D NMR cross sections taken from covariance total correlation(More)
Ultra-performance liquid chromatography coupled to mass spectrometry (UPLC/MS) has been used increasingly for measuring changes of low molecular weight metabolites in biofluids/tissues in response to biological challenges such as drug toxicity and disease processes. Typically samples show high variability in concentration, and the derived metabolic profiles(More)
BACKGROUND In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS We clinically and genetically characterized members of a five-generation black family(More)
BACKGROUND/AIMS Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS We investigated 25 patients from(More)
Small molecules are central to biology, mediating critical phenomena such as metabolism, signal transduction, mating attraction, and chemical defense. The traditional categories that define small molecules, such as metabolite, secondary metabolite, pheromone, hormone, and so forth, often overlap, and a single compound can appear under more than one(More)
Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While(More)
Elucidation of the chemical composition of biological samples is a main focus of systems biology and metabolomics. In order to comprehensively study these complex mixtures, reliable, efficient, and automatable methods are needed to identify and quantify the underlying metabolites and natural products. Because of its rich information content, nuclear(More)
A novel, single stage high resolution mass spectrometry-based method is presented for the population level screening of inborn errors of metabolism. The approach proposed here extends traditional electrospray tandem mass spectrometry screening by introducing nanospray ionization and high resolution mass spectrometry, allowing the selective detection of more(More)
We present a new approach for analysis, information recovery, and display of biological (1)H nuclear magnetic resonance (NMR) spectral data, cluster analysis statistical spectroscopy (CLASSY), which profiles qualitative and quantitative changes in biofluid metabolic composition by utilizing a novel local-global correlation clustering scheme to identify(More)