Steven K. Charles

Learn More
In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This(More)
In 1991, a novel robot named MIT-MANUS was introduced as a test bed to study the potential of using robots to assist in and quantify the neuro-rehabilitation of motor function. It introduced a new brand of therapy, offering a highly backdrivable mechanism with a soft and stable feel for the user. MIT-MANUS proved an excellent fit for shoulder and elbow(More)
Understanding the dynamics of wrist rotations is important for many fields, including biomechanics, rehabilitation and motor neuroscience. This paper provides an experimentally based mathematical model of wrist rotation dynamics in Flexion-Extension (FE) and Radial-Ulnar Deviation (RUD), and characterizes the torques required to overcome the passive(More)
The control of wrist rotations is critical for normal upper limb function, yet has received little attention. In this study, we characterized path shape of wrist rotations in order to better understand the biomechanical and neural factors governing their control. Subjects performed step-tracking wrist rotations in eight directions “at a comfortable speed”(More)
When humans rotate their wrist in flexion-extension, radial-ulnar deviation, and combinations, the resulting paths (like the path of a laser pointer on a screen) exhibit a distinctive pattern of curvature. In this report we show that the passive stiffness of the wrist is sufficient to account for this pattern. Simulating the dynamics of wrist rotations(More)
Because wrist rotation dynamics are dominated by stiffness (Charles SK, Hogan N. J Biomech 44: 614-621, 2011), understanding how humans plan and execute coordinated wrist rotations requires knowledge of the stiffness characteristics of the wrist joint. In the past, the passive stiffness of the wrist joint has been measured in 1 degree of freedom (DOF).(More)
Coordinated movement requires that the neuromuscular system account and compensate for movement dynamics. One particularly complex aspect of movement dynamics is the interaction that occurs between degrees of freedom (DOF), which may be caused by inertia, damping, and/or stiffness. During wrist rotations, the two DOF of the wrist (flexion–extension and(More)
Because the dynamics of wrist rotations are dominated by stiffness, understanding wrist rotations requires a thorough characterization of wrist stiffness in multiple degrees of freedom. The only prior measurement of multivariable wrist stiffness was confined to approximately one-seventh of the wrist range of motion (ROM). Here, we present a precise(More)
Because damage to the cerebellum results in characteristic movement incoordination known as "ataxia," it has been hypothesized that it is involved in estimation of limb dynamics that occur during movement. However, cerebellar function may extend beyond movement to force control in general, with or without movement. Here we tested whether the cerebellum is(More)