Learn More
Given an n × n symmetric positive definite matrix A and a vector c, two numerical methods for approximating A 1/2 c are developed, analyzed, and computationally tested. The first method applies a Newton iteration to a specific nonlinear system to approximate A 1/2 c while the second method applies a step-control method to numerically solve a specific(More)
Quantitative cortical microarchitectural end points are important for understanding structure-function relations in the context of fracture risk and therapeutic efficacy. This technique study details new image-processing methods to automatically segment and directly quantify cortical density, geometry, and microarchitecture from HR-pQCT images of the distal(More)
Vertebral fractures may result in pain, loss of height, spinal instability, kyphotic deformity and ultimately increased morbidity. Fracture risk can be estimated by vertebral bone mineral density (BMD). However, vertebral fractures may be better defined by more selective methods that account for micro-architecture. Our aim was to quantify regional(More)
The use of high resolution peripheral quantitative computed tomography (HR-pQCT) and in vivo micro-CT for studies of bone disease and treatment has become increasingly common, and with these methods comes large quantities of data requiring analysis. A simple, robust, and fully-automated segmentation algorithm is presented that efficiently segments bone(More)
Lysyl oxidase (LOX), an extracellular matrix remodeling enzyme, appears to have a role in promoting breast cancer cell motility and invasiveness. In addition, increased LOX expression has been correlated with decreases in both metastases-free, and overall survival in breast cancer patients. With this background, we studied the ability of(More)
Cleft lip and palate (CL/P), as is true of many craniofacial malformations in humans, is etiologically complex and highly variable in expression. A/WySn mice are an intriguing model for human CL/P because they develop this dysmorphology with a variable expression pattern, incomplete penetrance and frequent unilateral expression on a homogeneous genetic(More)
A new approach for the study of geometric morphometrics is presented based on well-established image processing techniques in a novel combination to support high-throughput analysis necessary for large-scale determination of genotype-phenotype relationships. The method retains full 3-D data, and avoids manual landmark selection. Micro-computed tomography(More)
Bone structure is an integral determinant of bone strength. The availability of high resolution peripheral quantitative computed tomography (HR-pQCT) has made it possible to measure three-dimensional bone microarchitecture and volumetric bone mineral density in vivo, with accuracy previously unachievable and with relatively low-dose radiation. Recent(More)
Endplate strength plays an important role in preventing vertebral failure of normal vertebrae and in cases where surgical intervention has replaced the disc with an implant or has altered the vertebral loading. We have developed a non-contact method based on the principles of image guided failure analysis, mechanical testing, and micro-computed tomography(More)
Subject motion during acquisition of high-resolution peripheral quantitative computed tomography (HR-pQCT) results in image artifacts and interferes with quantification of bone architecture used to study bone-related diseases such as osteoporosis. We propose an automatic method to measure physical subject motion that frequently takes place during(More)