Steven Jansen

Learn More
Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been(More)
Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the(More)
• Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light,(More)
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged(More)
Aluminum phytotoxicity and genetically based aluminum resistance has been studied intensively during recent decades because aluminum toxicity is often the primary factor limiting crop productivity on acid soils. Plants that grow on soils with high aluminum concentrations employ three basic strategies to deal with aluminum stress. While excluders effectively(More)
Pit membranes between xylem vessels have been suggested to have functional adaptive traits because of their influence on hydraulic resistance and vulnerability to embolism in plants. Observations of intervessel pit membranes in 26 hardwood species using electron microscopy showed significant variation in their structure, with a more than 25-fold difference(More)
The distribution and systematic significance of aluminium accumulation is surveyed based on semi-quantitative tests of 166 species, representing all tribes and subfamilies of the Melastomataceae as well as a few members of related families within the Myrtales. The character is strongly present in nearly all members of the Memecylaceae and in most primitive(More)
Xylem cavitation resistance has profound implications for plant physiology and ecology. This process is characterized by a 'vulnerability curve' (VC) showing the variation of the percentage of cavitation as a function of xylem pressure potential. The shape of this VC varies from 'sigmoidal' to 'exponential'. This review provides a panorama of the techniques(More)
While tracheid size of conifers is often a good proxy of water transport efficiency, correlations between conifer wood structure and transport safety remain poorly understood. It is hypothesized that at least some of the variation in bordered pit and tracheid structure is associated with both transport efficiency and embolism resistance. Stem and root(More)
Leaf nitrogen (N) and phosphorus (P) concentrations are correlated in plants. Higher-level phylogenetic effects can influence leaf N and P. By contrast, little is known about the phylogenetic variation in the leaf accumulation of most other elements in plant tissues, including elements with quantitatively lesser roles in metabolism than N, and elements that(More)