Steven J. Phipps

Learn More
The effects of the Indonesian Throughflow (ITF) on ENSO dynamics are studied in a coupled climate model by comparing two simulations, one with an open ITF and the other with a closed ITF. Closing the ITF results in an El Niño–like climate state in the Pacific, which is characterized by weakened trade winds, a flatter equatorial thermocline, and weaker(More)
The Southern Annular Mode (SAM) is the primary pattern of climate variability in the Southern Hemisphere1,2, influencing latitudinal rainfall distribution and temperatures from the subtropics to Antarctica. The positive summer trend in the SAM over recent decades is widely attributed to stratospheric ozonedepletion2; however, thebrevity of observational(More)
Reconstructions of past climate show notable temperature variability over the past millennium, with relatively warm conditions during the Medieval Climate Anomaly (MCA) and a relatively cold Little Ice Age (LIA). Multimodel simulations of the past millennium are used together with a wide range of reconstructions of Northern Hemispheric mean annual(More)
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental(More)
The role of the Indonesian Throughflow (ITF) in controlling regional mean climate and rainfall is examined using a coupled ocean-atmosphere general circulation model. Experiments employing both a closed and open ITF are equilibrated to steady state and then 200 years of natural climatic variability is assessed within each model run, with a particular focus(More)
Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to(More)
The Australian Community Ocean Model (AusCOM) is an initiative by the Australian climate sciences community (including government and academic research laboratories) towards a unified coupled ocean-seaice model for climate applications. The technical configuration and details of the sub-models are presented here. Initial results, and the development of a(More)
  • 1