Learn More
We present EMAN (Electron Micrograph ANalysis), a software package for performing semiautomated single-particle reconstructions from transmission electron micrographs. The goal of this project is to provide software capable of performing single-particle reconstructions beyond 10 A as such high-resolution data become available. A complete single-particle(More)
EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored(More)
Due to large sizes and complex nature, few large macromolecular complexes have been solved to atomic resolution. This has lead to an under-representation of these structures, which are composed of novel and/or homologous folds, in the library of known structures and folds. While it is often difficult to achieve a high-resolution model for these structures,(More)
Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant bottleneck when datasets of a hundred thousand or even a million particles are required for structure determination at near atomic resolution. Algorithm development of fully automated particle selection is thus an important research(More)
Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the(More)
Several factors, including spatial and temporal coherence of the electron microscope, specimen movement, recording medium, and scanner optics, contribute to the decay of the measured Fourier amplitude in electron image intensities. We approximate the combination of these factors as a single Gaussian envelope function, the width of which is described by a(More)
Apaf-1 and cytochrome c coassemble in the presence of dATP to form the apoptosome. We have determined a structure of the apoptosome at 12.8 A resolution by using electron cryomicroscopy and single-particle methods. We then docked appropriate crystal structures into the map to create an accurate domain model. Thus, we found that seven caspase recruitment(More)
A technique of neutron in-plane scattering for studying the structures of peptide pores in membranes is described. Alamethicin in the inserted state was prepared and undeuterated and deuterated dilauroyl phosphatidylcholine (DLPC) hydrated with D2O or H2O. Neutron in-plane scattering showed a strong dependence on deuteration, clearly indicating that water(More)
Cryo-electron microscopy reconstruction methods are uniquely able to reveal structures of many important macromolecules and macromolecular complexes. EMDataBank.org, a joint effort of the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB) and the National Center for Macromolecular Imaging (NCMI), is a global(More)
Voltage-dependent L-type Ca(2+) channels play important functional roles in many excitable cells. We present a three-dimensional structure of an L-type Ca(2+) channel. Electron cryomicroscopy in conjunction with single-particle processing was used to determine a 30-A resolution structure of the channel protein. The asymmetrical channel structure consists of(More)