Learn More
EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored(More)
Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant bottleneck when datasets of a hundred thousand or even a million particles are required for structure determination at near atomic resolution. Algorithm development of fully automated particle selection is thus an important research(More)
Synaptotagmin acts as a Ca(2+) sensor in neurotransmitter release through its two C(2) domains. Ca(2+)-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca(2+) binding to the C(2)B domain is more crucial for release than Ca(2+) binding to the(More)
Cryo-electron microscopy reconstruction methods are uniquely able to reveal structures of many important macromolecules and macromolecular complexes. EMDataBank.org, a joint effort of the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB) and the National Center for Macromolecular Imaging (NCMI), is a global(More)
  • Jean-François Ménétret, Julia Schaletzky, William M Clemons, Andrew R Osborne, Sigrid S Skånland, Carilee Denison +6 others
  • 2007
The SecY complex associates with the ribosome to form a protein translocation channel in the bacterial plasma membrane. We have used cryo-electron microscopy and quantitative mass spectrometry to show that a nontranslating E. coli ribosome binds to a single SecY complex. The crystal structure of an archaeal SecY complex was then docked into the electron(More)
Apaf-1 and cytochrome c coassemble in the presence of dATP to form the apoptosome. We have determined a structure of the apoptosome at 12.8 A resolution by using electron cryomicroscopy and single-particle methods. We then docked appropriate crystal structures into the map to create an accurate domain model. Thus, we found that seven caspase recruitment(More)
Sub-nanometer resolution structure determination is becoming a common practice in electron cryomicroscopy of macromo-lecular assemblies. The data for these studies have until now been collected on photographic film. Using cytoplasmic polyhedrosis virus (CPV), a previously determined structure, as a test specimen, we show the feasibility of obtaining a 9 A(More)
The three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) has been determined by electron cryomicroscopy and single-particle reconstruction. The receptor was immunoaffinity-purified and formed functional InsP3- and heparin-sensitive channels with a unitary conductance similar to native InsP3Rs. The channel structure(More)
The 14 A resolution structure of the 2.3 MDa Ca2+ release channel (also known as RyR1) was determined by electron cryomicroscopy and single particle reconstruction. This structure was produced using collected data used for our previous published structures at 22-30 A resolution, but now taking advantage of recent algorithmic improvements in the EMAN(More)
Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in(More)