Steven Huyghe

Learn More
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional(More)
The mammalian multifunctional protein-2 (MFP-2, also called multifunctional enzyme 2, D-bifunctional enzyme or 17-beta-estradiol dehydrogenase type IV) was identified by several groups about a decade ago. It plays a central role in peroxisomal beta-oxidation as it handles most, if not all, peroxisomal beta-oxidation substrates. Deficiency of this enzyme in(More)
The purpose of this study was to investigate whether deficient peroxisomal beta-oxidation is causally involved in the neuronal migration defect observed in Pex5 knockout mice. These mice are models for Zellweger syndrome, a peroxisome biogenesis disorder. Neocortical development was evaluated in mice carrying a partial or complete defect of peroxisomal(More)
Inactivation of peroxisomal beta-oxidation in mice, by knocking out multifunctional protein-2 (MFP-2; also called d-bifunctional enzyme), causes male infertility. In the testis, extensive accumulations of neutral lipids were observed in Sertoli cells, beginning in prepubertal mice and evolving in complete testicular atrophy by the age of 4 months.(More)
Peroxisomal metabolism is essential for normal brain development both in men and in mice. Using conditional knock-out mice, we recently showed that peroxisome deficiency in liver has a severe and persistent impact on the formation of cortex and cerebellum, whereas absence of functional peroxisomes from the CNS only causes developmental delays without(More)
Peroxisomal beta-oxidation system consists of peroxisome proliferator-activated receptor alpha (PPARalpha)-inducible pathway capable of catalyzing straight-chain acyl-CoAs and a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs. Disruption of the inducible beta-oxidation pathway in mice at the level of fatty acyl-CoA(More)
In humans, mutations inactivating multifunctional protein-2 (MFP-2), and thus peroxisomal beta-oxidation, cause neuronal heterotopia and demyelination, which is clinically reflected by hypotonia, seizures, and death within the first year of life. In contrast, our recently generated MFP-2-deficient mice did not show neurodevelopmental abnormalities but(More)
The ontogeny of the following peroxisomal metabolic pathways was evaluated in mouse liver and brain: alpha-oxidation, beta-oxidation and ether phospholipid synthesis. In mouse embryos lacking functional peroxisomes (PEX5(-/-) knock-out), a deficiency of plasmalogens and an accumulation of the very-long-chain fatty acid C(26:0) was observed in comparison(More)
 Ca2+-dependent Cl– secretion in the respiratory tract occurs physiologically or under pathophysiological conditions when inflammatory mediators are released. The mechanism of intracellular Ca2+ release was investigated in the immortalized bronchial epithelial cell line 16HBE14o-. Experiments on both intact and permeabilized cells revealed that only(More)
Mice with inactivation of the D-specific multifunctional protein 2 (MFP2), a crucial enzyme of peroxisomal beta-oxidation, develop multiple pathologies in diverse tissues already starting in the postnatal period. Gene expression profiling performed on liver of 2-day-old pups revealed up-regulation of PPAR alpha responsive genes in knockout mice.(More)