Steven H. Olson

Learn More
The enzyme 11 ␤ –hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11 ␤-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11 ␤-HSD1(More)
The enzyme 11beta-hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11beta-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent(More)
We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone(More)
Structure-based rational design led to the discovery of novel inhibitors of the MDM2-p53 protein-protein interaction. The affinity of these compounds for MDM2 was improved through conformational control of both the piperidinone ring and the appended N-alkyl substituent. Optimization afforded 29 (AM-8553), a potent and selective MDM2 inhibitor with excellent(More)
p53 is a critical tumor suppressor and is the most frequently inactivated gene in human cancer. Inhibition of the interaction of p53 with its negative regulator MDM2 represents a promising clinical strategy to treat p53 wild-type tumors. AMG 232 is a potential best-in-class inhibitor of the MDM2-p53 interaction and is currently in clinical trials. We(More)
Adamantyl triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They are active both in in vitro and in in vivo pharmacodynamic models. The synthesis and structure-activity relationships of these inhibitors are presented.
Structural analysis of both the MDM2-p53 protein-protein interaction and several small molecules bound to MDM2 led to the design and synthesis of tetrasubstituted morpholinone 10, an MDM2 inhibitor with a biochemical IC50 of 1.0 μM. The cocrystal structure of 10 with MDM2 inspired two independent optimization strategies and resulted in the discovery of(More)
The development of the structurally complex MDM2/p53 inhibitor AM-8553 was impeded by the low yield of the initial synthesis. A second generation synthesis is described that features a Noyori dynamic kinetic resolution, a highly diastereoselective allylation, and a novel oxazoline-assisted piperidinone forming reaction to provide AM-8553 in 35.6% yield and(More)
We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these(More)
4-Methyl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They were active in vitro and in an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented.