Steven Girouard

Learn More
BACKGROUND Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. METHODS AND RESULTS -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during(More)
INTRODUCTION Optical mapping with voltage-sensitive dyes has made it possible to record cardiac action potentials with high spatial resolution that is unattainable by conventional techniques. Optically recorded signals possess distinct properties that differ importantly from electrograms recorded with extracellular electrodes or action potentials recorded(More)
Recent evidence suggests that ion channels governing the response of action potential duration (APD) to a premature stimulus (ie, APD restitution) are heterogeneously dispersed throughout the heart. However, because of limitations of conventional electrophysiological recording techniques, the effects of restitution in single cells on ventricular(More)
BACKGROUND Previously, we have shown that a premature stimulus can significantly modulate spatial gradients of ventricular repolarization (ie, modulated dispersion), which result from heterogeneous electrophysiological properties between cells. The role modulated dispersion may play in determining electrical instability in the heart is unknown. METHODS(More)
BACKGROUND Although the relationship between cardiac wavelength (lambda) and path length importantly determines the stability of reentrant arrhythmias, the physiological determinants of lambda are poorly understood. To investigate the cellular mechanisms that control lambda during reentry, we developed an experimental system for continuously monitoring(More)
Routine clinical right ventricular pacing generates left ventricular dyssynchrony manifested by early septal shortening followed by late lateral contraction, which, in turn, reciprocally stretches the septum. Dyssynchrony is disadvantageous to cardiac mechanoenergetics and worsens clinical prognosis, yet little is known about its molecular consequences.(More)
BACKGROUND Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. METHODS AND RESULTS In(More)
Action potential duration (APD) restitution is classically attributed to membrane ionic currents; however, the role of cell-to-cell coupling in restitution is poorly understood. To test the hypothesis that passive electrical properties of multicellular preparations influence restitution, spatial gradients of transmembrane voltage were measured with high(More)
Positive responses to left (LV) and biventricular (BV) stimulation observed in heart failure patients with left bundle branch block (LBBB) suggest a possible mechanism of LV resynchronization. An anesthetized canine LBBB model was developed using radio frequency ablation. Before and after ablation, LV pressure derivative over time (dP/dt) and aortic pulse(More)