Steven G Ortiz

Learn More
Continued production of wear debris affects both initial osseointegration and subsequent bone remodeling of total joint replacements (TJRs). However, continuous delivery of clinically relevant particles using a viable, cost effective, quantitative animal model to simulate the scenario in humans has been a challenge for orthopedic researchers. In this study,(More)
Wear particles produced from total joint replacements have been shown to stimulate a foreign body and chronic inflammatory reaction that results in periprosthetic osteolysis. Most animal models that simulate these events have used a single injection of particles, which is not representative of the clinical scenario, in which particles are continuously(More)
In vitro models are important investigative tools in understanding the biological processes involved in wear-particle-induced chronic inflammation and periprosthetic osteolysis. In the clinical scenario, particles are produced and delivered continuously over extended periods of time. Previously, we quantified the delivery of both polystyrene and(More)
  • 1