Feng Wang6
Sinisa Coh6
Alex Zettl6
Learn More
Using a first-principles calculation, we have computed the charge density for states near EF that is related to the current density observable in scanning-tunneling-microscopy experiments for surfaces of hexagonal, rhombohedral, and a model stage-l intercalated graphite. In hexagonal and rhombohedral graphite, the tunneling current is predicted to be(More)
Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to(More)
We present a systematic Raman study of unconventionally stacked double-layer graphene, and find that the spectrum strongly depends on the relative rotation angle between layers. Rotation-dependent trends in the position, width and intensity of graphene 2D and G peaks are experimentally established and accounted for theoretically. Our theoretical analysis(More)
Inelastic light scattering spectroscopy has, since its first discovery, been an indispensable tool in physical science for probing elementary excitations, such as phonons, magnons and plasmons in both bulk and nanoscale materials. In the quantum mechanical picture of inelastic light scattering, incident photons first excite a set of intermediate electronic(More)
Electron-electron interactions are significantly enhanced in one-dimensional systems, and single-walled carbon nanotubes provide a unique opportunity for studying such interactions and the related many-body effects in one dimension. However, single-walled nanotubes can have a wide range of diameters and hundreds of different structures, each defined by its(More)
We study theoretically the Raman spectrum of the rotated double-layer graphene, consisting of two graphene layers rotated with respect to each other by an arbitrary angle θ. We find a relatively simple dependence of the Raman G peak intensity on the angle θ. On the other hand, the Raman 2D peak position, intensity, and width show a much more complicated(More)
We have measured the conductance and characterized molecule-electrode binding geometries of four pyridine-terminated molecules by elongating and then compressing gold point contacts in a solution of molecules. We have found that all pyridine-terminated molecules exhibit bistable conductance signatures, signifying that the nature of the pyridine-gold bond(More)
Fano resonances are features in absorption, scattering or transport spectra resulting from the interaction of discrete and continuum states. They have been observed in a variety of systems. Here, we report a many-body Fano resonance in bilayer graphene that is continuously tunable by means of electrical gating. Discrete phonons and continuous exciton(More)