Steven E Quatela

Learn More
K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of(More)
In analyzing the sequence tags for mutant mouse embryonic stem (ES) cell lines in BayGenomics (a mouse gene-trapping resource), we identified a novel gene, 1-acylglycerol-3-phosphate O-acyltransferase (Agpat6), with sequence similarities to previously characterized glycerolipid acyltransferases. Agpat6's closest family member is another novel gene that we(More)
Sprouty (Spry) proteins are negative regulators of receptor tyrosine kinase signaling; however, their exact mechanism of action remains incompletely understood. We identified phosphatidylinositol-specific phospholipase C (PLC)-γ as a partner of the Spry1 and Spry2 proteins. Spry-PLCγ interaction was dependent on the Src homology 2 domain of PLCγ and a(More)
Several genetically encoded fluorescent biosensors for Ras family GTPases have been developed that permit spatiotemporal analysis of the activation of these signaling molecules in living cells. We describe here the use of the simplest of these probes, the Ras binding domain (RBD) of selected effectors fused with green fluorescent protein (GFP) or one of its(More)
The discovery that Ras proteins are modified by enzymes restricted to the endoplasmic reticulum and Golgi apparatus and that, at steady state, a significant pool of Ras is localized on the Golgi has led to the hypothesis that Ras can become activated on and signal from intracellular membranes. Fluorescent probes capable of showing when and where in living(More)
K-Ras is a member of a family of proteins that associate with the plasma membrane by virtue of a lipid modification that inserts into the membrane and a polybasic region that associates with the anionic head groups of inner leaflet phospholipids. In the case of K-Ras, the lipid is a C-terminal farnesyl isoprenoid adjacent to a polylysine sequence. The(More)
The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues(More)
Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a(More)
  • 1