Learn More
Quantitative sensory testing (QST) can provide useful information about the underlying mechanisms involved in chronic pain. However, currently available devices typically employed suffer from operator-dependent effects, or are too cumbersome for routine clinical care. This paper presents the design and initial validation of a novel automated pressure-pain(More)
OBJECTIVE Recent scientific findings have reinvigorated interest in examining the role of γ-aminobutyric acid (GABA), the major inhibitory central nervous system neurotransmitter, in chronic pain conditions. Decreased inhibitory neurotransmission is a proposed mechanism in the pathophysiology of chronic pain syndromes such as fibromyalgia (FM). The purpose(More)
The antinociceptive effects of the serotonin (5-HT)1A/7 receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) administered into the medial thalamus were evaluated. Pain behaviors organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations during shock, VDSs), and forebrain (vocalization after discharges, VADs) levels of the neuraxis(More)
The antinociceptive action of morphine microinjected into the nucleus parafascicularis thalami (nPf) on pain behaviors organized at different levels of the neuraxis was examined in the rat. Behaviors organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations during shock, VDSs), and forebrain (vocalization afterdischarges, VADs) levels were(More)
UNLABELLED Cholinergic stimulation of dopamine neurons in the ventral tegmental area (VTA) underlies activation of the brain reward circuitry. Activation of this circuit is proposed to preferentially suppress the affective reaction to noxious stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats to noxious(More)
UNLABELLED The parafascicular nucleus (nPf) of the intralaminar thalamus is implicated in the processing of pain affect in both animals and humans. Administration of morphine into nPf results in preferential suppression of the affective reaction to noxious tail shock in rats. The involvement of the ventrolateral periaqueductal gray in mediating the(More)
BACKGROUND Neuroimmune activation in the spinal dorsal horn plays an important role in the pathogenesis of chronic pain after peripheral nerve injury. OBJECTIVE The aim of this study was to examine the role of neuroimmune activation in below-level neuropathic pain after traumatic spinal cord injury (SCI). METHODS Right hemilateral SCI was created in(More)
The thalamic contribution to cholinergic-induced antinociception was examined by microinjecting the acetylcholine (ACh) agonist carbachol into the intralaminar nucleus parafascicularis (nPf) of rats. Pain behaviors organized at spinal (spinal motor reflexes), medullary (vocalizations during shock), and forebrain (vocalization afterdischarges, VADs) levels(More)
BACKGROUND Fibromyalgia is a chronic widespread pain condition, with patients commonly reporting other symptoms such as sleep difficulties, memory complaints and fatigue. The use of magnetic resonance imaging (MRI) in fibromyalgia has allowed for the detection of neural abnormalities, with alterations in brain activation elicited by experimental pain and(More)
The medial thalamic parafascicular nucleus (PF) and the rostral anterior cingulate cortex (rACC) are implicated in the processing and suppression of the affective dimension of pain. The present study evaluated the functional interaction between PF and rACC in mediating the suppression of pain affect in rats following administration of morphine or carbachol(More)