Learn More
Although the skeleton's adaptability to load-bearing has been recognized for over a century, the specific mechanical components responsible for strengthening it have not been identified. Here we show that after mechanically stimulating the hindlimbs of adult sheep on a daily basis for a year with 20-minute bursts of very-low-magnitude, high-frequency(More)
Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of(More)
The physiological role of the TNF receptor (TNFR) family member, RANK, was investigated by generating RANK-deficient mice. RANK(-/-) mice were characterized by profound osteopetrosis resulting from an apparent block in osteoclast differentiation. RANK expression was not required for the commitment, differentiation, and functional maturation of macrophages(More)
Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this(More)
The means by which muscle function modulates bone homeostasis is poorly understood. To begin to address this issue, we have developed a novel murine model of unilateral transient hindlimb muscle paralysis using botulinum toxin A (Botox). Female C57BL/6 mice (16 weeks) received IM injections of either saline or Botox (n = 10 each) in both the quadriceps and(More)
This study examined the effects of dietary fat on the fatty acid composition of liver and bone, and on the concentration of insulin-like growth factor-I (IGF-I) in liver and bone, as well as the relationship of these factors to bone metabolism. Day-old male broiler chicks were given a semipurified diet containing one of four lipid sources: soybean oil(More)
We have previously shown that transient paralysis of murine hindlimb muscles causes profound degradation of both trabecular and cortical bone in the adjacent skeleton within 3 weeks. Morphologically, the acute loss of bone tissue appeared to arise primarily due to osteoclastic bone resorption. Given that the loss of muscle function in this model is(More)
In the mouse, ovariectomy (OVX) leads to significant reductions in cancellous bone volume while estrogen (17beta-estradiol, E2) replacement not only prevents bone loss but can increase bone formation. As the E2-dependent increase in bone formation would require the proliferation and differentiation of osteoblast precursors, we hypothesized that E2 regulates(More)
The phenotype of thrombospondin 2 (TSP2)-null mice includes abnormalities in collagen fibrils and increases in ligamentous laxity, vascular density, and bleeding time. In this study, analyses by computerized tomography (CT) revealed that cortical density was increased in long bones of TSP2-null mice. Histomorphometric analysis showed that the mid-diaphyseal(More)
A unilateral injection of botulinum toxin A (BTxA) in the calf induces paralysis and profound loss of ipsalateral trabecular bone within days. However, the cellular mechanism underlying acute muscle paralysis-induced bone loss (MPIBL) is poorly understood. We hypothesized that MPIBL arises via rapid and extensive osteoclastogenesis. We performed a series of(More)