Steven C Pugliese

Learn More
Pulmonary arterial hypertension (PAH) is characterized by molecular and pathologic alteration to the pulmonary circulation, resulting in increased pulmonary vascular resistance, right ventricular failure, and eventual death. Pharmacologic treatment of PAH consists of use of a multitude of pulmonary vasodilators, sometimes in combination. PAH has been(More)
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World(More)
Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and(More)
The development of parenteral prostacyclin therapy marked a dramatic breakthrough in the treatment of pulmonary arterial hypertension (PAH). Intravenous (IV) epoprostenol was the first PAH specific therapy and to date, remains the only treatment to demonstrate a mortality benefit. Because of the inherent complexities and risks of treating patients with(More)
Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and(More)
Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of(More)
Title: The Role of Inflammation in Hypoxic Pulmonary Hypertension: from cellular mechanisms to 1 clinical phenotypes. 2 3 Steven C. Pugliese, MD (corresponding author) 4 Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, 5 Division of Pulmonary Sciences and Critical Care Medicine 6 Division of Pediatrics-Critical Care 7 Departments(More)
  • 1