Steven C Huber

Learn More
Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux.(More)
Sucrose-phosphate synthase (SPS; E.C. 2.4.1.14) is the plant enzyme thought to play a major role in sucrose biosynthesis. In photosynthetic and nonphotosynthetic tissues, SPS is regulated by metabolites and by reversible protein phosphorylation. In leaves, phosphorylation modulates SPS activity in response to light/dark signals and end-product accumulation.(More)
Brassinosteroids (BRs) regulate plant development through a signal transduction pathway involving the BRI1 and BAK1 transmembrane receptor kinases. The detailed molecular mechanisms of phosphorylation, kinase activation, and oligomerization of the BRI1/BAK1 complex in response to BRs are uncertain. We demonstrate that BR-dependent activation of BRI1(More)
Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) for hormone perception and signal transduction. Many animal receptor kinases exhibit ligand-dependent oligomerization followed by autophosphorylation and activation of the(More)
Fruits of orange-fleshed and green-fleshed muskmelon (Cucumis melo L.) were harvested at different times throughout development to evaluate changes in metabolism which lead to sucrose accumulation, and to determine the basis of differences in fruit sucrose accumulation among genotypes. Concentrations of sucrose, raffinose saccharides, hexoses and starch, as(More)
The endoplasmic reticulum-associated oleate desaturase FAD2 (1-acyl-2-oleoyl-sn-glycero-3-phosphocholine Delta12-desaturase) is the key enzyme responsible for the production of linoleic acid in non-photosynthetic tissues of plants. Little is known, however, concerning the post-transcriptional mechanisms that regulate the activity of this important enzyme.(More)
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a putative Leucine-rich repeat receptor kinase in Arabidopsis that has been shown by genetic and molecular analysis to be a critical component of brassinosteroid signal transduction. In this study we examined some of the biochemical properties of the BRI1 kinase domain (BRI1-KD) in vitro, which might be important(More)
The inhibitor protein (IP) that inactivates spinach leaf NADH:nitrate reductase (NR) has been identified for the first time as a member of the eukaryotic 14-3-3 protein family based on three lines of evidence. First, the sequence of an eight amino acid tryptic peptide, obtained from immunopurified IP, matched that of a highly conserved region of the 14-3-3(More)
Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin(More)
Three lines of evidence indicate that the 14-3-3 proteins that inactivate the phosphorylated form of spinach leaf NADH:nitrate reductase (NR) bind to the enzyme at the regulatory phosphorylation site (Ser-543). First, a phosphorylated synthetic peptide based on the regulatory site can prevent and also reverse the inactivation of phospho-NR caused by 14-3-3(More)